Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The ubiquitin-selective chaperone CDC-48/p97 links myosin assembly to human myopathy

An Addendum to this article was published on 01 May 2007

Abstract

Protein degradation in eukaryotes often requires the ubiquitin-selective chaperone p97 for substrate recruitment and ubiquitin-chain assembly. However, the physiological relevance of p97, and its role in developmental processes, remain unclear. Here, we discover an unanticipated function for CDC-48/p97 in myosin assembly and myofibril organization, both in Caenorhabditis elegans and humans. The developmentally regulated assembly of a CDC-48–UFD-2–CHN-1 complex links turnover of the myosin-directed chaperone UNC-45 to functional muscle formation. Our data suggest a similarly conserved pathway regulating myosin assembly in humans. Remarkably, mutations in human p97, known to cause hereditary inclusion-body myopathy, abrogate UNC-45 degradation and result in severely disorganized myofibrils, detrimental towards sarcomeric function. These results identify a key role for CDC-48/p97 in the process of myofibre differentiation and maintenance, which is abolished during pathological conditions leading to protein aggregation and inclusion-body formation in human skeletal muscle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: UFD-2 binds to the p97 homologues CDC-48.1 and CDC-48.2.
Figure 2: UFD-2 and CHN-1 are not critical for ERAD.
Figure 3: CDC-48 regulates the myosin chaperone UNC-45.
Figure 4: Complex of UFD-2, CHN-1, UNC-45 and CDC-48.1.
Figure 5: Developmental regulation of UNC-45 turnover.
Figure 6: Human p97 is able to compensate loss of CDC-48.1 in vivo.
Figure 7: Stability of human SM UNC-45 depends on UFD2a, p97 and the proteasome.
Figure 8: Myosin assembly regulation is abrogated by the p97R155C mutation.

Similar content being viewed by others

References

  1. Lecker, S. H., Solomon, V., Mitch, W. E. & Goldberg, A. L. Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J. Nutr. 129, S227–S237 (1999).

    Article  Google Scholar 

  2. Solomon, V. & Goldberg, A. L. Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J. Biol. Chem. 271, 26690–26697 (1996).

    Article  CAS  Google Scholar 

  3. Tisdale, M. J. Cachexia in cancer patients. Nature Rev. Cancer 2, 862–871 (2002).

    Article  CAS  Google Scholar 

  4. Jagoe, R. T. & Goldberg, A. L. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy? Curr. Opin. Clin. Nutr. Metab. Care 4, 183–190 (2001).

    Article  CAS  Google Scholar 

  5. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  Google Scholar 

  6. Hoppe, T. Multiubiquitylation by E4 enzymes: 'one size' doesn't fit all. Trends Biochem. Sci. 30, 183–187 (2005).

    Article  CAS  Google Scholar 

  7. Nastasi, T. et al. Ozz-E3, a muscle-specific ubiquitin ligase, regulates β-catenin degradation during myogenesis. Dev. Cell 6, 269–282 (2004).

    Article  CAS  Google Scholar 

  8. Hoppe, T. et al. Regulation of the myosin-directed chaperone UNC-45 by a novel E3/E4-multiubiquitylation complex in C. elegans. Cell 118, 337–349 (2004).

    Article  CAS  Google Scholar 

  9. Barral, J. M., Hutagalung, A. H., Brinker, A., Hartl, F. U. & Epstein, H. F. Role of the myosin assembly protein UNC-45 as a molecular chaperone for myosin. Science 295, 669–671 (2002).

    Article  CAS  Google Scholar 

  10. Epstein, H. F. & Thomson, J. N. Temperature-sensitive mutation affecting myofilament assembly in Caenorhabditis elegans. Nature 250, 579–580 (1974).

    Article  CAS  Google Scholar 

  11. Barral, J. M., Bauer, C. C., Ortiz, I. & Epstein, H. F. Unc-45 mutations in Caenorhabditis elegans implicate a CRO1/She4p-like domain in myosin assembly. J. Cell Biol. 143, 1215–1225 (1998).

    Article  CAS  Google Scholar 

  12. Rouiller, I., Butel, V. M., Latterich, M., Milligan, R. A. & Wilson-Kubalek, E. M. A major conformational change in p97 AAA ATPase upon ATP binding. Mol. Cell 6, 1485–1490 (2000).

    Article  CAS  Google Scholar 

  13. Meyer, H. H., Wang, Y. & Warren, G. Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4. EMBO J. 21, 5645–5652 (2002).

    Article  CAS  Google Scholar 

  14. Rape, M. et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell 107, 667–677 (2001).

    Article  CAS  Google Scholar 

  15. Richly, H. et al. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell 120, 73–84 (2005).

    Article  CAS  Google Scholar 

  16. Bays, N. W., Wilhovsky, S. K., Goradia, A., Hodgkiss-Harlow, K. & Hampton, R. Y. HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol. Biol. Cell 12, 4114–4128 (2001).

    Article  CAS  Google Scholar 

  17. Braun, S., Matuschewski, K., Rape, M., Thoms, S. & Jentsch, S. Role of the ubiquitin-selective CDC48(UFD1/NPL4)chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J. 21, 615–621 (2002).

    Article  CAS  Google Scholar 

  18. Jarosch, E. et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nature Cell Biol. 4, 134–139 (2002).

    Article  CAS  Google Scholar 

  19. Rabinovich, E., Kerem, A., Frohlich, K. U., Diamant, N. & Bar-Nun, S. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol. Cell Biol. 22, 626–634 (2002).

    Article  CAS  Google Scholar 

  20. Ye, Y., Meyer, H. H. & Rapoport, T. A. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414, 652–656 (2001).

    Article  CAS  Google Scholar 

  21. Ye, Y., Meyer, H. H. & Rapoport, T. A. Function of the p97–Ufd1–Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J. Cell Biol. 162, 71–84 (2003).

    Article  CAS  Google Scholar 

  22. Mouysset, J., Kaehler, C. & Hoppe, T. A conserved role of Caenorhabditis elegans CDC-48 in ER-associated protein degradation. J. Struct. Biol. 156, 41–49 (2006).

    Article  CAS  Google Scholar 

  23. Yamanaka, K., Okubo, Y., Suzaki, T. & Ogura, T. Analysis of the two p97/VCP/Cdc48p proteins of Caenorhabditis elegans and their suppression of polyglutamine-induced protein aggregation. J. Struct. Biol. 146, 242–250 (2004).

    Article  CAS  Google Scholar 

  24. Meusser, B., Hirsch, C., Jarosch, E. & Sommer, T. ERAD: the long road to destruction. Nature Cell Biol. 7, 766–772 (2005).

    Article  CAS  Google Scholar 

  25. Rutkowski, D. T. & Kaufman, R. J. A trip to the ER: coping with stress. Trends Cell Biol. 14, 20–28 (2004).

    Article  CAS  Google Scholar 

  26. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

    Article  CAS  Google Scholar 

  27. Urano, F. et al. A survival pathway for Caenorhabditis elegans with a blocked unfolded protein response. J. Cell Biol. 158, 639–646 (2002).

    Article  CAS  Google Scholar 

  28. Shen, X. et al. Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107, 893–903 (2001).

    Article  CAS  Google Scholar 

  29. Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96, 635–644 (1999).

    Article  CAS  Google Scholar 

  30. Venolia, L. & Waterston, R. H. The unc-45 gene of Caenorhabditis elegans is an essential muscle-affecting gene with maternal expression. Genetics 126, 345–353 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kachur, T., Ao, W., Berger, J. & Pilgrim, D. Maternal UNC-45 is involved in cytokinesis and colocalizes with non-muscle myosin in the early Caenorhabditis elegans embryo. J. Cell Sci. 117, 5313–5321 (2004).

    Article  CAS  Google Scholar 

  32. Watts, G. D. et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nature Genet. 36, 377–381 (2004).

    Article  CAS  Google Scholar 

  33. Price, M. G., Landsverk, M. L., Barral, J. M. & Epstein, H. F. Two mammalian UNC-45 isoforms are related to distinct cytoskeletal and muscle-specific functions. J. Cell Sci. 115, 4013–4023 (2002).

    Article  CAS  Google Scholar 

  34. Ballinger, C. A. et al. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell Biol. 19, 4535–4545 (1999).

    Article  CAS  Google Scholar 

  35. Mahoney, J. A. et al. The human homologue of the yeast polyubiquitination factor Ufd2p is cleaved by caspase 6 and granzyme B during apoptosis. Biochem. J. 361, 587–595 (2002).

    Article  CAS  Google Scholar 

  36. Kaneko, C. et al. Characterization of the mouse gene for the U-box-type ubiquitin ligase UFD2a. Biochem. Biophys. Res. Commun. 300, 297–304 (2003).

    Article  CAS  Google Scholar 

  37. Kaneko-Oshikawa, C. et al. Mammalian E4 is required for cardiac development and maintenance of the nervous system. Mol. Cell Biol. 25, 10953–10964 (2005).

    Article  CAS  Google Scholar 

  38. Hutagalung, A. H., Landsverk, M. L., Price, M. G. & Epstein, H. F. The UCS family of myosin chaperones. J. Cell Sci. 115, 3983–3990 (2002).

    Article  CAS  Google Scholar 

  39. Weihl, C. C., Dalal, S., Pestronk, A. & Hanson, P. I. Inclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation. Hum. Mol. Genet. 15, 189–199 (2006).

    Article  CAS  Google Scholar 

  40. Martinsson, T. et al. Autosomal dominant myopathy: missense mutation (Glu-706 --> Lys) in the myosin heavy chain IIa gene. Proc. Natl Acad. Sci. USA 97, 14614–14619 (2000).

    Article  CAS  Google Scholar 

  41. Tajsharghi, H. et al. Mutations and sequence variation in the human myosin heavy chain IIa gene (MYH2). Eur. J. Hum. Genet. 13, 617–622 (2005).

    Article  CAS  Google Scholar 

  42. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

    Google Scholar 

  44. Sulston, J. & Hodgkin, J. in The Nematode Caenorhabditis elegans (ed. Wood, W.) 587–606 (Cold Spring Habor Laboratory Press, Cold Spring Habor, NY, 1988).

    Google Scholar 

Download references

Acknowledgements

We are grateful to H. F. Epstein for providing us with Punc-54::unc-45FLAG nematodes and the monoclonal anti-UNC-54 antibody; A. Fire, V. E. Kimonis, Y. Kohara, J. A. Mahoney, S. Mitani, D. Ron, M. Vidal, E. E. Wanker, K. Yamanaka, the Caenorhabditis Genetics Center (funded by the National Institutes of Health (NIH) Center for Research Resources) and the Dana-Farber Cancer Institute and Geneservice Ltd for antibodies, plasmids, cDNAs, and strains. Primary human myoblasts of p97R155C IBMPFD patients were obtained from the Muscle Tissue Culture Collection (MD-NET; service structure S1; 01GM0601), a partner of EuroBioBank (www.eurobiobank.org). We also thank A. Buchberger, C. Eckmann, H. F. Epstein, O. Hobert and S. Jentsch for critical reading of the manuscript. This work was supported by grants from the Deutsche Forschungsgemeinschaft to T.H. (Ho SFB 444/3 and Ho 2541/1-1) and by a grant from the Myositis Association (Washington, DC,) to S.K. and H.L.

Author information

Authors and Affiliations

Authors

Contributions

P.C.J. and J.K. were responsible for the experimental work with support from J.M., R.B. and S.K. G.C. provided technical assistance and H.L. provided the primary patient myoblasts. T.H. planned the entire project, designed experiments, analysed data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Thorsten Hoppe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4 and S5 (PDF 200 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janiesch, P., Kim, J., Mouysset, J. et al. The ubiquitin-selective chaperone CDC-48/p97 links myosin assembly to human myopathy. Nat Cell Biol 9, 379–390 (2007). https://doi.org/10.1038/ncb1554

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1554

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing