Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intrinsic ubiquitination activity of PCAF controls the stability of the oncoprotein Hdm2

Abstract

The p300–CBP-associated factor (PCAF) is a histone acetyltransferase (HAT) involved in the reversible acetylation of various transcriptional regulators1, including the tumour suppressor p53. It is implicated in many cellular processes, such as transcription, differentiation, proliferation and apoptosis. We observed that knockdown of PCAF expression in HeLa or U2OS cell lines induces stabilization of the oncoprotein Hdm2, a RING finger E3 ligase primarily known for its role in controlling p53 stability2,3. To investigate the molecular basis of this effect, we examined whether PCAF is involved in Hdm2 ubiquitination. Here, we show that PCAF, in addition to its acetyltransferase activity, possesses an intrinsic ubiquitination activity that is critical for controlling Hdm2 expression levels, and thus p53 functions. Our data highlight a regulatory crosstalk between PCAF and Hdm2 activities, which is likely to have a central role in the subtle control of p53 activity after DNA damage.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PCAF controls Hdm2 stability and ubiquitination.
Figure 2: PCAF is an ubiquitin ligase.
Figure 3: PCAF E3 activity is critical for Hdm2 degradation and stress-induced p53 activation in vivo.
Figure 4: PCAF knockdown blocks p53 stabilization on genotoxic stress.
Figure 5: PCAF E3 activity is important for appropriate activation of p53 functions.

Similar content being viewed by others

References

  1. Schiltz, R. L. & Nakatani, Y. The PCAF acetylase complex as a potential tumor suppressor. Biochim. Biophys. Acta 1470, M37–M53 (2000).

    CAS  PubMed  Google Scholar 

  2. Vargas, D. A., Takahashi, S. & Ronai, Z. Mdm2: A regulator of cell growth and death. Adv. Cancer Res. 89, 1–34 (2003).

    Article  CAS  Google Scholar 

  3. Iwakuma, T. & Lozano, G. MDM2, an introduction. Mol. Cancer Res. 1, 993–1000 (2003).

    CAS  PubMed  Google Scholar 

  4. Bond, G. L., Hu, W. & Levine, A. J. MDM2 is a central node in the p53 pathway: 12 years and counting. Curr. Cancer Drug Targets 5, 3–8 (2005).

    Article  CAS  Google Scholar 

  5. Liu, L. et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol. Cell. Biol. 19, 1202–1209 (1999).

    Article  CAS  Google Scholar 

  6. Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H. & Weissman, A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951 (2000).

    Article  CAS  Google Scholar 

  7. Linares, L. K., Hengstermann, A., Ciechanover, A., Muller, S. & Scheffner, M. HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc. Natl Acad. Sci. USA 100, 12009–12014 (2003).

    Article  CAS  Google Scholar 

  8. Hershko, A., Ciechanover, A. & Varshavsky, A. The ubiquitin system. Nature Med. 6, 1073–1081 (2000).

    Article  CAS  Google Scholar 

  9. Stommel, J. M. & Wahl, G. M. A new twist in the feedback loop: stress-activated MDM2 destabilization is required for p53 activation. Cell Cycle 4, 411–417 (2005).

    Article  CAS  Google Scholar 

  10. Lorick, K. L. et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl Acad. Sci. USA 96, 11364–11369 (1999).

    Article  CAS  Google Scholar 

  11. Caron, C., Boyault, C. & Khochbin, S. Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability. Bioessays 27, 408–415 (2005).

    Article  CAS  Google Scholar 

  12. Grossman, S. R. et al. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300, 342–344 (2003).

    Article  CAS  Google Scholar 

  13. Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  Google Scholar 

  14. Robinson, P. A. & Ardley, H. C. Ubiquitin-protein ligases. J. Cell Sci. 117, 5191–5194 (2004).

    Article  CAS  Google Scholar 

  15. Stommel, J. M. & Wahl, G. M. Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation. EMBO J. 23, 1547–1556 (2004).

    Article  CAS  Google Scholar 

  16. Kroll, M. et al. Inducible degradation of IκBα by the proteasome requires interaction with the F-box protein h-βTrCP. J. Biol. Chem. 274, 7941–7945 (1999).

    Article  CAS  Google Scholar 

  17. Wang, X., Taplick, J., Geva, N. & Oren, M. Inhibition of p53 degradation by Mdm2 acetylation. FEBS Lett. 561, 195–201 (2004).

    Article  CAS  Google Scholar 

  18. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  Google Scholar 

  19. Michael, D. & Oren, M. The p53–Mdm2 module and the ubiquitin system. Semin. Cancer Biol. 13, 49–58 (2003).

    Article  CAS  Google Scholar 

  20. Lakin, N. D. & Jackson, S. P. Regulation of p53 in response to DNA damage. Oncogene 18, 7644–7655 (1999).

    Article  CAS  Google Scholar 

  21. Hengstermann, A., Linares, L. K., Ciechanover, A., Whitaker, N. J. & Scheffner, M. Complete switch from Mdm2 to human papillomavirus E6-mediated degradation of p53 in cervical cancer cells. Proc. Natl Acad. Sci. USA 98, 1218–1223 (2001).

    Article  CAS  Google Scholar 

  22. Barlev, N. A. et al. Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases. Mol. Cell 8, 1243–1254 (2001).

    Article  CAS  Google Scholar 

  23. You, H., Yamamoto, K. & Mak, T. W. Regulation of transactivation-independent proapoptotic activity of p53 by FOXO3a. Proc. Natl Acad. Sci. USA 103, 9051–9056 (2006).

    Article  CAS  Google Scholar 

  24. Brooks, C. L. & Gu, W. p53 Ubiquitination: Mdm2 and beyond. Mol. Cell 21, 307–315 (2006).

    Article  CAS  Google Scholar 

  25. Jin, Y., Zeng, S. X., Lee, H. & Lu, H. MDM2 mediates p300/CREB-binding protein-associated factor ubiquitination and degradation. J. Biol. Chem. 279, 20035–20043 (2004).

    Article  CAS  Google Scholar 

  26. Jin, Y., Zeng, S. X., Dai, M. S., Yang, X. J. & Lu, H. MDM2 inhibits PCAF (p300/CREB-binding protein-associated factor)-mediated p53 acetylation. J. Biol. Chem. 277, 30838–30843 (2002).

    Article  CAS  Google Scholar 

  27. Bode, A. M. & Dong, Z. Post-translational modification of p53 in tumorigenesis. Nature Rev. Cancer 4, 793–805 (2004).

    Article  CAS  Google Scholar 

  28. Vousden, K. H. & Prives, C. p53 and prognosis: new insights and further complexity. Cell 120, 7–10 (2005).

    CAS  PubMed  Google Scholar 

  29. Bres, V. et al. Differential acetylation of Tat coordinates its interaction with the co-activators cyclin T1 and PCAF. EMBO J. 21, 6811–6819 (2002).

    Article  CAS  Google Scholar 

  30. Sun, X. Z., Nguyen, J. & Momand, J. Purification of recombinant p53 from Sf9 insect cells. Methods Mol. Biol. 234, 17–28 (2003).

    CAS  PubMed  Google Scholar 

  31. Cuvier, O., Hart, C. M., Kas, E. & Laemmli, U. K. Identification of a multicopy chromatin boundary element at the borders of silenced chromosomal domains. Chromosoma 110, 519–531 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Ogryzko for Flag–PCAF C-terminal deletion mutants, V. Favaudon for NCS, M. Oren for HA–Hdm2 expression vector, Y. Boublik (Recombinant Protein Platform, CRBM–CNRS) for production of baculovirus-expressed proteins, G. Lledo for enzyme production. We also thank our colleagues for their help, suggestions and criticisms, particularly the members of our groups and V. Gire, M. Piechaczyk and C. Sardet. This work was supported by grants from the Human Frontier Science Program (Young Investigator Program) to M.B., Action Concertée Incitative (ACI; M.B.) and ACI Biologie Cellulaire, Moléculaire et Structurale (O. Coux) from the French Ministère de la Recherche, Sidaction (M.B. and O. Coux), Association pour la Recherche sur le Cancer (ARC; O. Coux), and European contracts n°QLG1-CT-2001-02026 (O. Coux) and 012182 (M.B.). L.L. was supported by fellowships from Sidaction and ANRS (Agence Nationale de Recherches sur le Sida), C.C.B. by the Human Frontier Science Program, and O. Cuvier by a fellowship from the Fondation pour la Recherche Médicale.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olivier Coux or Monsef Benkirane.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5 and S6 (PDF 288 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linares, L., Kiernan, R., Triboulet, R. et al. Intrinsic ubiquitination activity of PCAF controls the stability of the oncoprotein Hdm2. Nat Cell Biol 9, 331–338 (2007). https://doi.org/10.1038/ncb1545

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1545

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing