Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CIPC is a mammalian circadian clock protein without invertebrate homologues

Abstract

At the core of the mammalian circadian clock is a feedback loop in which the heterodimeric transcription factor CLOCK–Brain, Muscle Arnt-like-1 (BMAL1) drives expression of its negative regulators, periods (PERs) and cryptochromes (CRYs). Here, we provide evidence that CLOCK-Interacting Protein, Circadian (CIPC) is an additional negative-feedback regulator of the circadian clock. CIPC exhibits circadian regulation in multiple tissues, and it is a potent and specific inhibitor of CLOCK–BMAL1 activity that functions independently of CRYs. CIPC–CLOCK protein complexes are present in vivo, and depletion of endogenous CIPC shortens the circadian period length. CIPC is unrelated to known proteins and has no recognizable homologues outside vertebrates. Our results suggest that negative feedback in the mammalian circadian clock is divided into distinct pathways, and that the addition of new genes has contributed to the complexity of vertebrate clocks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of CIPC interaction with CLOCK.
Figure 2: Circadian rhythms of Cipc mRNA and protein expression in multiple peripheral tissues.
Figure 3: CIPC inhibits CLOCK–BMAL1 transcriptional activity in mammalian cells in a manner that is distinguishable from CRY proteins.
Figure 4: Colocalization of CIPC and CLOCK in liver-cell nuclei.
Figure 5: Presence of CIPC–CLOCK protein complexes in vivo.
Figure 6: Depletion of endogenous CIPC shortens the circadian period of mammalian cells.

Similar content being viewed by others

References

  1. Young, M. W. & Kay, S. A. Time zones: a comparative genetics of circadian clock. Nature Rev. Genet. 2, 702–715 (2001).

    Article  CAS  Google Scholar 

  2. Lowrey, P. L. & Takahashi, J. S. Genetics of the mammalian circadian system: photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. Annu. Rev. Genet. 34, 533–562 (2000).

    Article  CAS  Google Scholar 

  3. Sato, T. K. et al. Feedback repression is required for mammalian circadian clock function. Nature Genet. 38, 312–319 (2006).

    Article  CAS  Google Scholar 

  4. Yamazaki, S. et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682–685 (2000).

    Article  CAS  Google Scholar 

  5. Balsalobre, A. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344–2347 (2000).

    Article  CAS  Google Scholar 

  6. Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998).

    Article  CAS  Google Scholar 

  7. Akhtar, R. A. et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12, 540–550 (2002).

    Article  CAS  Google Scholar 

  8. Duffield, G. E., Best, J. D., Meurers, B. H., Bittner, A., Loros, J. J. & Dunlap, J. C. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr. Biol. 12, 551–557 (2002).

    Article  CAS  Google Scholar 

  9. Panda, S. et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320 (2002).

    Article  CAS  Google Scholar 

  10. Storch, K.-F. et al. Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78–83 (2002).

    Article  CAS  Google Scholar 

  11. Gachon, F., Nagoshi, E., Brown, S. A., Ripperger, J. & Schibler, U. The mammalian circadian timing system: from gene expression to physiology. Chromosoma 113, 103–112 (2004).

    Article  Google Scholar 

  12. Ouyang, Y., Andersson, C. R., Kondo, T., Golden, S. S. & Johnson, C. H. Resonating circadian clocks enhance fitness in cyanobacteria. Proc. Natl Acad. Sci. USA. 95, 8660–8664 (1998).

    Article  CAS  Google Scholar 

  13. Dodd, A. N. et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630–633 (2005).

    Article  CAS  Google Scholar 

  14. Gekakis, N. et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564–1569 (1998).

    Article  CAS  Google Scholar 

  15. Yoo, S. H. et al. A noncanonical E-box enhancer drives mouse Period2 circadian oscillations in vivo. Proc. Natl Acad. Sci. USA 102, 2608–2613 (2005).

    Article  CAS  Google Scholar 

  16. Sangoram, A. M. et al. Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK–BMAL1-induced transcription. Neuron 21, 1101–1113 (1998).

    Article  CAS  Google Scholar 

  17. Kume, K. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193–205 (1999).

    Article  CAS  Google Scholar 

  18. Griffin, E. A., Staknis, D. & Weitz, C. J. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286, 768–771 (1999).

    Article  CAS  Google Scholar 

  19. Yagita, K. et al. Dimerization and nuclear entry of mPER proteins in mammalian cells. Gene Dev. 14, 1353–1363 (2000).

    CAS  PubMed  Google Scholar 

  20. Glossup, N. R., Lyons, L. C. & Hardin, P. E. Interlocked feedback loops within the Drosophila circadian oscillator. Science 286, 766–768 (1999).

    Article  Google Scholar 

  21. Lee, K., Loros, J. J. & Dunlap, J. C. Interconnected feedback loops in the Neurospora circadian system. Science 289, 107–110 (2000).

    Article  CAS  Google Scholar 

  22. Shearman, L. P. et al. Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1119 (2000).

    Article  CAS  Google Scholar 

  23. Preitner, N. et al. The orphan nuclear receptor REV–ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002).

    Article  CAS  Google Scholar 

  24. Lowrey, P. L. et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288, 483–491 (2000).

    Article  CAS  Google Scholar 

  25. Vielhaber, E., Eide, E., Rivers, A., Gao, Z. H. & Virshup, D. M. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase Iε. Mol. Cell Biol. 20, 4888–4899 (2000).

    Article  CAS  Google Scholar 

  26. Field, M. D. et al. Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 25, 437–447 (2000).

    Article  CAS  Google Scholar 

  27. Barnes, J. W. et al. Requirement of mammalian timeless for circadian rhythmicity. Science 302, 439–442 (2003).

    Article  CAS  Google Scholar 

  28. Honma, S. et al. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419, 841–844 (2002).

    Article  CAS  Google Scholar 

  29. Brown, S. A. et al. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308, 693–696 (2005).

    Article  CAS  Google Scholar 

  30. King, D. P. et al. Positional cloning of the mouse circadian clock gene. Cell 89, 641–653 (1997).

    Article  CAS  Google Scholar 

  31. Doi, M., Hirayama, J. & Sassone-Corsi, P. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497–508 (2006).

    Article  CAS  Google Scholar 

  32. Nagoshi, E. et al. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119, 693–705 (2004).

    Article  CAS  Google Scholar 

  33. van der Horst, G. T. et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398, 627–630 (1999).

    Article  CAS  Google Scholar 

  34. Vitaterna, M. H. et al. Differential regulation of mammalian Period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc. Natl Acad. Sci. USA 96, 12114–12119 (1999).

    Article  CAS  Google Scholar 

  35. Antoch, M. P. et al. Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89, 655–667 (1997).

    Article  CAS  Google Scholar 

  36. Bae, K. et al. Differential Functions of mPer1, mPer2, and mPer3 in the SCN Circadian Clock. Neuron 30, 525–536 (2001).

    Article  CAS  Google Scholar 

  37. Zheng, B. et al. The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400, 169–173 (1999).

    Article  CAS  Google Scholar 

  38. Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S. & Reppert, S. M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855–867 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Choogon Lee for advice on immunoprecipitation and D. Knutti and K.-F. Storch for helpful comments on the manuscript. This work was supported by the National Institutes of Health (NIH; R01-MH59943; C.J.W.), by a Dana-Mahoney Fellowship from the Dana Foundation (W.-N.Z.), and by the Deutsche Forschungsgemeinschaft and the 6th Framework Project EUCLOCK (A.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles J. Weitz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5, Supplementary Notes and Supplementary Methods (PDF 631 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, WN., Malinin, N., Yang, FC. et al. CIPC is a mammalian circadian clock protein without invertebrate homologues. Nat Cell Biol 9, 268–275 (2007). https://doi.org/10.1038/ncb1539

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1539

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing