Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Retinoblastoma protein and anaphase-promoting complex physically interact and functionally cooperate during cell-cycle exit

A Corrigendum to this article was published on 01 March 2007

Abstract

The retinoblastoma protein (pRB) negatively regulates the progression from G1 to S phase of the cell cycle, in part, by repressing E2F-dependent transcription1. pRB also possesses E2F-independent functions that contribute to cell-cycle control — for example, during pRB-mediated cell-cycle arrest pRB associates with Skp2, the F-box protein of the Skp1–Cullin–F-box protein (SCF) E3 ubiquitin ligase complex, and promotes the stability of the cyclin-dependent kinase-inhibitor p27Kip1 through an unknown mechanism2,3. Degradation of p27Kip1 is mediated by ubiquitin-dependent targeting of p27Kip1 by SCF –Skp2 (ref. 4). Here, we report a novel interaction between pRB and the anaphase-promoting complex/cyclosome (APC/C) that controls p27Kip1 stability by targeting Skp2 for ubiquitin-mediated degradation. Cdh1, an activator of APC/C, not only interacts with pRB but is also required for a pRB-induced cell-cycle arrest. The results reveal an unexpected physical convergence between the pRB tumour-suppressor protein and E3 ligase complexes, and raise the possibility that pRB may direct APC/C to additional targets during pRB-mediated cell-cycle exit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: pRB, but not p107 and p130, associates with APC/Ccdh1.
Figure 2: pRB is itself not a target for APC/C-mediated degradation, but pRB-associated APC/C is catalytically active.
Figure 3: pRB–APCcdh1 association, ubiquitination of Skp2 and p27Kip1 protein accumulation are coordinated during pRB-mediated cell-cycle arrest.
Figure 4: pRB associates with both APCcdh1 and Skp2 simultaneously and interacts specifically with APC/C during cell-cycle exit.
Figure 5: Targeting of Skp2 and p27Kip1 accumulation are required for pRB-mediated cell-cycle arrest.

Similar content being viewed by others

References

  1. Classon, M. & Harlow E. The retinoblastoma tumour suppressor in development and cancer. Nature Rev. Cancer 2, 910–917 (2002).

    Article  CAS  Google Scholar 

  2. Alexander, K. & Hinds P. W. Requirement for p27(KIP1) in retinoblastoma protein-mediated senescence. Mol. Cell. Biol. 21, 3616–3631 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ji, P. et al. An Rb-Skp2-p27 pathway mediates acute cell cycle inhibition by Rb and is retained in a partial-penetrance Rb mutant. Mol. Cell. 16, 47–58 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Amati, B. & Vlach J. Kip1 meets SKP2: new links in cell-cycle control. Nature Cell Biol. 1, E91–E93 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Thomas, D. M. et al. Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma. J. Cell. Biol. 167, 925–934 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bloom, J. & Pagano M. Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin. Cancer Biol. 13, 41–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Castro, A. et al. The anaphase-promoting complex: a key factor in the regulation of cell cycle. Oncogene 24, 314–325 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Fay, D. S., Keenan S. & Han M. fzr-1 and lin-35/Rb function redundantly to control cell proliferation in C. elegans as revealed by a nonbiased synthetic screen. Genes Dev. 16, 503–517 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dick, F. A., Sailhamer E. & Dyson N. J. Mutagenesis of the pRB pocket reveals that cell cycle arrest functions are separable from binding to viral oncoproteins. Mol. Cell. Biol. 20, 3715–3727 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dick, F. A. & Dyson N. J. Three regions of the pRB pocket domain affect its inactivation by human papillomavirus E7 proteins. J. Virol. 76, 6224–6234 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Isaac, C. E. et al. The retinoblastoma protein regulates pericentric heterochromatin. Mol. Cell. Biol. 26, 3659–3671 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kraft, C. et al. The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Mol. Cell. 18, 543–553 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Sorensen, C. S. et al. Nonperiodic activity of the human anaphase-promoting complex-Cdh1 ubiquitin ligase results in continuous DNA synthesis uncoupled from mitosis. Mol. Cell. Biol. 20, 7613–7623 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei, W. et al. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428, 194–198 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Bashir, T. et al. Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature. 428, 190–193 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Dickins, R. A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nature Genet. 37, 1289–1295 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Rape, M., Reddy S. K. & Kirschner M. W. The processivity of multiubiquitination by the APC determines the order of substrate degradation. Cell 12, 89–103 (2006).

    Article  Google Scholar 

  19. Turnell, A. S. et al. The APC/C and CBP/p300 cooperate to regulate transcription and cell-cycle progression. Nature 438, 690–695 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Stroschein, S. L. et al. Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN. Genes Dev. 15, 2822–2836 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wan, Y., Liu X. & Kirschner M. W. The anaphase-promoting complex mediates TGF-β signaling by targeting SnoN for destruction. Mol. Cell. 8, 1027–1039 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Benevolenskaya, E. V. et al. Binding of pRB to the PHD protein RBP2 promotes cellular differentiation. Mol. Cell. 18, 623–635 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Miyake, S. et al. Cells degrade a novel inhibitor of differentiation with E1A-like properties upon exiting the cell cycle. Mol. Cell. Biol. 20, 8889–8902 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lasorella, A. et al. Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth. Nature 442, 471–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Ang, X. L. & Harper J. W. Interwoven ubiquitination oscillators and control of cell cycle transitions. Sci STKE e31 (2004).

  26. van Roessel, P. et al. Independent regulation of synaptic size and activity by the anaphase-promoting complex. Cell 119, 707–718 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Dick, F. A. & Dyson N. J. pRB contains an E2F1-specific binding domain that allows E2F1-induced apoptosis to be regulated separately from other E2F activities. Mol. Cell. 12, 639–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Dignam, J. D., Lebovitz R. M. & Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Imaki, H. et al. Cell cycle-dependent regulation of the Skp2 promoter by GA-binding protein. Cancer Res. 63, 4607–4613 (2003).

    CAS  PubMed  Google Scholar 

  30. Wirbelauer, C. et al. The F-box protein Skp2 is a ubiquitylation target of a Cul1-based core ubiquitin ligase complex: evidence for a role of Cul1 in the suppression of Skp2 expression in quiescent fibroblasts. EMBO J. 19, 5362–5375 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, H. et al. p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell 82, 915–925 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Vernell, R., Helin K. & Muller H. Identification of target genes of the p16INK4A-pRB-E2F pathway. J. Biol. Chem. 278, 46124–46137 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank: C. Pfleger for numerous APC/C-related plasmids; R. Watson for Myc-tagged pRB, p107, p130 plasmids; S. Lowe for U2OS shRB cell line; J. Rocco for pcDNA6/TR and pcDNA4/TO plasmids; and B. Schulman for the CMV–Myc–Skp2 plasmid. We also like to thank P. Hinds and K. Münger for helpful comments on the manuscript. This study was supported by National Institutes of Health (NIH) grant CA64402 to N.J.D and by the Massachusetts General Hospital Fund for Medical Discovery to U.K.B.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anders M. Näär or Nicholas J. Dyson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5 and S6 (PDF 531 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binné, U., Classon, M., Dick, F. et al. Retinoblastoma protein and anaphase-promoting complex physically interact and functionally cooperate during cell-cycle exit. Nat Cell Biol 9, 225–232 (2007). https://doi.org/10.1038/ncb1532

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1532

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing