Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of local actin assembly by membrane fusion-dependent compartment mixing

Abstract

Local actin assembly is associated with sites of exocytosis in processes ranging from phagocytosis to compensatory endocytosis. Here, we examine whether the trigger for actin-coat assembly around exocytosing Xenopus egg cortical granules is 'compartment mixing' — the union of the contents of the plasma membrane with that of the secretory granule membrane. Consistent with this model, compartment mixing occurs on cortical granule–plasma membrane fusion and is required for actin assembly. Compartment mixing triggers actin assembly, at least in part, through diacylglycerol (DAG), which incorporates into the cortical granule membranes from the plasma membrane after cortical granule–plasma membrane fusion. DAG, in turn, directs long-term recruitment of protein kinase Cβ (PKCβ) to exocytosing cortical granules, where it is required for activation of Cdc42 localized on the cortical granules. The results demonstrate that mixing of two membrane compartments can direct local actin assembly and indicate that this process is harnessed during Xenopus egg cortical granule exocytosis to drive compensatory endocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Actin-coat assembly occurs after plasma membrane and cortical granule membrane incorporation on cortical granule exocytosis.
Figure 2: Ca2+ elevation triggers DAG generation on the plasma membrane, which incorporates into the cortical granule membrane on cortical granule–plasma membrane fusion.
Figure 3: DAG incorporation into cortical granule membranes occurs before actin assembly and is dependent on cortical granule–plasma membrane compartment mixing.
Figure 4: DAG is required for actin-coat assembly.
Figure 5: PKCβ is transiently recruited to all cortical granules on Ca2+ elevation, but only remains on those that have exocytosed.
Figure 6: Perturbation of PKCβ affects actin-coat assembly.
Figure 7: Perturbation of PKCβ affects activation of Cdc42, which is localized on cortical granule membranes before egg activation.
Figure 8: Schematic representation of how compartment mixing results in actin-coat assembly.

Similar content being viewed by others

References

  1. May, R. C. & Machesky, L. M. Phagocytosis and the actin cytoskeleton. J. Cell Sci. 114, 1061–1077 (2001).

    CAS  PubMed  Google Scholar 

  2. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  Google Scholar 

  3. Bretscher, M. S. & Aguado-Velasco, C. Membrane traffic during cell locomotion. Curr. Opin. Cell Biol. 10, 537–541 (1998).

    Article  CAS  Google Scholar 

  4. Sokac, A. M., Co, C., Taunton, J. & Bement, W. Cdc42-dependent actin polymerization during compensatory endocytosis in Xenopus eggs. Nature Cell Biol. 5, 727–732 (2003).

    Article  CAS  Google Scholar 

  5. Nemoto, T., Kojima, T., Oshima, A., Bito, H. & Kasai, H. Stabilization of exocytosis by dynamic F-actin coating of zymogen granules in pancreatic acini. J. Biol. Chem. 279, 37544–37550 (2004).

    Article  CAS  Google Scholar 

  6. Sokac, A. M. & Bement, W. M. Kiss-and-coat and compartment mixing: coupling exocytosis to signal generation and local actin assembly. Mol. Biol. Cell 17, 1495–1502 (2006).

    Article  CAS  Google Scholar 

  7. Montecucco, C. & Schiavo, G. Structure and function of tetanus and botulinum neurotoxins. Q. Rev. Biophys. 28, 423–472 (1995).

    Article  CAS  Google Scholar 

  8. Lan, J. Y. et al. Protein kinase C modulates NMDA receptor trafficking and gating. Nature Neurosci. 4, 382–390 (2001).

    Article  CAS  Google Scholar 

  9. Takenawa, T. & Itoh, T. Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim. Biophys. Acta. 1533, 190–206 (2001).

    Article  CAS  Google Scholar 

  10. Stith, B. J., Woronoff, K., Espinoza, R. & Smart, T. sn-1,2-diacylglycerol and choline increase after fertilization in Xenopus laevis. Mol. Biol. Cell 8, 755–765 (1997).

    Article  CAS  Google Scholar 

  11. Larabell, C. A., Rowning, B. A. & Moon, R. T. A PKC wave follows the calcium wave after activation of Xenopus eggs. Differentiation 72, 41–47 (2004).

    Article  CAS  Google Scholar 

  12. Taunton, J. et al. Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J. Cell Biol. 148, 519–530 (2000).

    Article  CAS  Google Scholar 

  13. Ono, Y. et al. Phorbol ester binding to protein kinase C requires a cysteine-rich zinc-finger-like sequence. Proc. Natl Acad. Sci. USA 86, 4868–4871 (1989).

    Article  CAS  Google Scholar 

  14. Zhang, G., Kazanietz, M. G., Blumberg, P. M. & Hurley, J. H. Crystal structure of the cys2 activator-binding domain of protein kinase C δ in complex with phorbol ester. Cell 81, 917–924 (1995).

    Article  CAS  Google Scholar 

  15. Abousalham, A., Liossis, C., O'Brien, L. & Brindley, D. N. Cell-permeable ceramides prevent the activation of phospholipase D by ADP-ribosylation factor and RhoA. J. Biol. Chem. 272, 1069–1075 (1997).

    Article  CAS  Google Scholar 

  16. Albert, A. P., Piper, A. S. & Large, W. A. Role of phospholipase D and diacylglycerol in activating constitutive TRPC-like cation channels in rabbit ear artery myocytes. J. Physiol. 566, 769–780 (2005).

    Article  CAS  Google Scholar 

  17. Topham, M. K. Signaling roles of diacylglycerol kinases. J. Cell Biochem. 97, 474–484 (2006).

    Article  CAS  Google Scholar 

  18. Bement, W. M. & Capco, D. G. Activators of protein kinase C trigger cortical granule exocytosis, cortical contraction, and cleavage furrow formation in Xenopus laevis oocytes and eggs. J. Cell Biol. 108, 885–892 (1989).

    Article  CAS  Google Scholar 

  19. Grandin, N. & Charbonneau, M. Intracellular pH and intracellular free calcium responses to protein kinase C activators and inhibitors in Xenopus eggs. Development 112, 461–470 (1991).

    CAS  PubMed  Google Scholar 

  20. Brose, N. & Rosenmund, C. Move over protein kinase C, you've got company: alternative cellular effectors of diacylglycerol and phorbol esters. J. Cell Sci. 115, 4399–4411 (2002).

    Article  CAS  Google Scholar 

  21. Oancea, E. & Meyer, T. Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 95, 307–318 (1998).

    Article  CAS  Google Scholar 

  22. Cho, W. Membrane targeting by C1 and C2 domains. J. Biol. Chem. 276, 32407–10 (2001).

    Article  CAS  Google Scholar 

  23. Ohno, S., Konno, Y., Akita, Y., Yano, A. & Suzuki, K. A point mutation at the putative ATP-binding site of protein kinase C alpha abolishes the kinase activity and renders it down-regulation-insensitive. J. Biol. Chem. 265, 6296–6300 (1990).

    CAS  PubMed  Google Scholar 

  24. Li, W. et al. Expression of an ATP binding mutant of PKC-δ inhibits Sis-induced transformation of NIH3T3 cells. Oncogene 13, 731–737 (1996).

    CAS  PubMed  Google Scholar 

  25. Liao, L., Ramsay, K. & Jaken, S. Protein kinase C isozymes in progressively transformed rat embryo fibroblasts. Cell Growth Differ. 5, 1185–1194 (1994).

    CAS  PubMed  Google Scholar 

  26. Cai, H. et al. Role of diacylglycerol-regulated protein kinase C isotypes in growth factor activation of the Raf-1 protein kinase. Mol. Cell Biol. 17, 732–741 (1997).

    Article  CAS  Google Scholar 

  27. Jaken, S. Protein kinase C isozymes and substrates. Curr. Opin. Cell Biol. 8, 168–173 (1996).

    Article  CAS  Google Scholar 

  28. Benink, H. A. & Bement, W. M. Concentric zones of active RhoA and Cdc42 around single cell wounds. J. Cell Biol. 168, 429–439 (2005).

    Article  CAS  Google Scholar 

  29. Ho, H. Y. et al. Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell 118, 203–216 (2004).

    Article  CAS  Google Scholar 

  30. Kaksonen, M., Sun, Y. & Drubin, D. G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115, 475–487 (2003).

    Article  CAS  Google Scholar 

  31. Merrifield, C. J., Qualmann, B., Kessels, M. M. & Almers, W. Neural Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur. J. Cell Biol. 83, 13–18 (2004).

    Article  CAS  Google Scholar 

  32. Becker, K. A. & Hart, N. H. Reorganization of filamentous actin and myosin-II in zebrafish eggs correlates temporally and spatially with cortical granule exocytosis. J. Cell Sci. 112, 97–110 (1999).

    CAS  PubMed  Google Scholar 

  33. van Weeren, L., de Graaff, A. M., Jamieson, J. D., Batenburg, J. J. & Valentijn, J. A. Rab3D and actin reveal distinct lamellar body subpopulations in alveolar epithelial type II cells. Am. J. Respir. Cell Mol. Biol. 30, 288–295 (2004).

    Article  CAS  Google Scholar 

  34. Eitzen, G. Actin remodeling to facilitate membrane fusion. Biochim. Biophys. Acta. 1641, 175–181 (2003).

    Article  CAS  Google Scholar 

  35. Chen, K. H., Peng, Z. G., Lavu, S. & Kung, H. F. Molecular cloning and sequence analysis of two distinct types of Xenopus laevis protein kinase C. Second Messengers Phosphoproteins 12, 251–260 (1988).

    CAS  PubMed  Google Scholar 

  36. Gundersen, C. B., Kohan, S. A., Chen, Q., Iagnemma, J. & Umbach, J. A. Activation of protein kinase C η triggers cortical granule exocytosis in Xenopus oocytes. J. Cell Sci. 115, 1313–1320 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Burkel for the Utr1–261–mRFP clone, M. Danilchik for the F-eGFP clone, T. Gomez for the Myc–Cdc42 clone, M. Kirschner for the Toca-1 antibody, T. Martin for providing BotA, and R. Tsien for the mRFP clone. This work is supported by National Institutes of Health (grant GM52932) to W.M.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoi-Ying E. Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3 and S4 (PDF 422 kb)

Supplementary Information

Supplementary Video 1 (MOV 813 kb)

Supplementary Information

Supplementary Video 2 (MOV 486 kb)

Supplementary Information

Supplementary Video 3 (MOV 210 kb)

Supplementary Information

Supplementary Video 4 (MOV 558 kb)

Supplementary Information

Supplementary Video 5 (MOV 740 kb)

Supplementary Information

Supplementary Video 6 (MOV 662 kb)

Supplementary Information

Supplementary Video 7 (MOV 893 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, HY., Bement, W. Control of local actin assembly by membrane fusion-dependent compartment mixing. Nat Cell Biol 9, 149–159 (2007). https://doi.org/10.1038/ncb1527

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1527

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing