Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dynein is required for receptor sorting and the morphogenesis of early endosomes

Abstract

The early endosome is organised into domains to ensure the separation of cargo1,2. Activated mitogenic receptors, such as epidermal growth factor (EGF) receptor, are concentrated into vacuoles enriched for the small GTPase Rab53,4, which progressively exclude nutrient receptors, such as transferrin receptor, into neighbouring tubules4,5,6,7. These vacuoles become enlarged, increase their content of intralumenal vesicles as EGF receptor is sorted from the limiting membrane, and eventually mature to late endosomes8. Maturation is governed by the loss of Rab5 and is accompanied by the movement of endosomes along microtubules towards the cell centre9. Here, we show that EGF relocates to the cell centre in a dynein-dependent fashion, concomitant with the sorting away of transferrin receptor, although it remains in Rab5-positive early endosomes. When dynein function is acutely disrupted, efficient recycling of transferrin from EGF-containing endosomes is retarded, loss of Rab5 is slowed and endosome enlargement is reduced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EGF movement is inhibited by acute disruption of dynein.
Figure 2: Motile EGF-containing endosomes are Rab5-positive.
Figure 3: EGF and Tf sort from early endosomes.
Figure 4: CC1 inhibits endosomal sorting of Tf and EGF.
Figure 5: Inhibition of dynein affects endosomal maturation.

Similar content being viewed by others

References

  1. Gruenberg, J. The endocytic pathway: a mosaic of domains. Nature Rev. Mol. Cell. Biol. 2, 721–730 (2001).

    Article  CAS  Google Scholar 

  2. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell. Biol. 2, 107–117 (2001).

    Article  CAS  Google Scholar 

  3. Felder, S. et al. Kinase activity controls the sorting of the epidermal growth factor receptor within the multivesicular body. Cell 61, 623–624 (1990).

    Article  CAS  Google Scholar 

  4. Sönnichsen, B., De Renzis, S., Nielsen, E., Rietdorf, J. & Zerial, M. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11. J. Cell Biol. 149, 901–914 (2000).

    Article  Google Scholar 

  5. Sheff, D. R., Daro, E. A., Hull, M. & Mellman, I. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J. Cell Biol. 145, 123–129 (1999).

    Article  CAS  Google Scholar 

  6. van der Sluijs, P. et al. The small GTP-binding protein rab4 controls an early sorting event on the endocytic pathway. Cell 70, 729–740 (1992).

    Article  CAS  Google Scholar 

  7. Ullrich, O., Reinsch, S., Urbé, S., Zerial, M. & Parton, R. Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol. 135, 913–924 (1996).

    Article  CAS  Google Scholar 

  8. Futter, C. E., Pearse, A., Hewlett, L. J. & Hopkins, C. R. Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse with lysosomes. J. Cell Biol. 132, 1011–1023 (1996).

    Article  CAS  Google Scholar 

  9. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).

    Article  CAS  Google Scholar 

  10. Allan, V. J. & Schroer, T. A. Membrane motors. Curr. Opin. Cell Biol. 11, 476–482 (1999).

    Article  CAS  Google Scholar 

  11. Valetti, C. et al. Role of dynactin in endocytic traffic: effects of dynamitin overexpression and colocalization with CLIP-170. Mol. Biol. Cell 10, 4107–4120 (1999).

    Article  CAS  Google Scholar 

  12. Jordens, I. et al. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. Curr. Biol. 11, 1680–1685 (2001).

    Article  CAS  Google Scholar 

  13. Lebrand, C. et al. Late endosome motility depends on lipids via the small GTPase Rab7. EMBO J. 21, 1289–1300 (2002).

    Article  CAS  Google Scholar 

  14. Echeverri, C. J., Paschal, B. M., Vaughan, K. T. & Vallee, R. B. Molecular characterisation of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organisation during mitosis. J. Cell Biol. 132, 617–633 (1996).

    Article  CAS  Google Scholar 

  15. Burkhardt, J., Echeverri, C., Nilsson, T. & Vallee, R. Overexpression of the Dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J. Cell Biol. 139, 469–484 (1997).

    Article  CAS  Google Scholar 

  16. Deacon, S. W. et al. Dynactin is required for bidirectional organelle transport. J. Cell Biol. 160, 297–301 (2003).

    Article  CAS  Google Scholar 

  17. Blangy, A., Arnaud, L. & Nigg, E. A. Phosphorylation by p34cdc2 protein kinase regulates binding of the kinesin-related motor HsEg5 to the dynactin subunit p150glued. J. Biol. Chem. 272, 19418–19424 (1997).

    Article  CAS  Google Scholar 

  18. Quintyne, N. J. et al. Dynactin is required for microtubule anchoring at centrosomes. J. Cell Biol. 147, 321–334 (1999).

    Article  CAS  Google Scholar 

  19. King, S., Brown, C., Maier, K., Quintyne, N. & Schroer, T. Analysis of the dynein-dynactin interaction in vitro and in vivo. Mol. Biol. Cell 14, 5089–5097 (2003).

    Article  CAS  Google Scholar 

  20. Nielsen, E., Severin, F., Backer, J., Hyman, A. & Zerial, M. Rab5 regulates motility of early endosomes on microtubules. Nature Cell Biol. 1, 376–382 (1999).

    Article  CAS  Google Scholar 

  21. Hoepfner, S. et al. Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell 121, 437–450 (2005).

    Article  CAS  Google Scholar 

  22. Mellman, I. Endocytosis and molecular sorting. Ann. Rev. Cell Dev. Biol. 12, 575–625 (1996).

    Article  CAS  Google Scholar 

  23. Lakadamyali, M., Rust, M. J. & Zhuang, X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124, 997–1009 (2006).

    Article  CAS  Google Scholar 

  24. Stoorvogel, W., Strous, G. J., Geuze, H. J., Oorschot, V. & Schwartz, A. L. Late endosomes derive from early endosomes by maturation. Cell 65, 417–427 (1991).

    Article  CAS  Google Scholar 

  25. Hopkins, C. R., Gibson, A., Shipman, M. & Miller, K. Movement of internalized ligand-receptor complexes along a continuous endosomal reticulum. Nature 346, 335–340 (1990).

    Article  CAS  Google Scholar 

  26. White, I. J., Bailey, L. M., Aghakhani, M. R., Moss, S. E. & Futter, C. E. EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J. 25, 1–12 (2006).

    Article  CAS  Google Scholar 

  27. Aniento, F., Emans, N., Griffiths, G. & Gruenberg, J. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J. Cell Biol. 123, 1373–1387 (1993).

    Article  CAS  Google Scholar 

  28. Bananis, E., Murray, J. W., Stockert, R. J., Satir, P. & Wolkoff, A. W. Regulation of early endocytic vesicle motility and fission in a reconstituted system. J. Cell Sci. 116, 2749–2761 (2003).

    Article  CAS  Google Scholar 

  29. Bananis, E., Murray, J. W., Stockert, R. J., Satir, P. & Wolkoff, A. W. Microtubule and motor-dependent endocytic vesicle sorting in vitro. J. Cell Biol. 151, 179–186 (2000).

    Article  CAS  Google Scholar 

  30. Miller, K., Beardmore, J., Kanety, H., Schlessinger, J. & Hopkins, C. Localization of the epidermal growth factor (EGF) receptor within the endosome of EGF-stimulated epidermoid carcinoma (A431) cells. J. Cell Biol. 102, 500–509 (1986).

    Article  CAS  Google Scholar 

  31. Yamashiro, D. J. & Maxfield, F. R. Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway. Cell 37, 789–800 (1984).

    Article  CAS  Google Scholar 

  32. Hopkins, C. R., Gibson, A., Shipman, M., Strickland, D. K. & Trowbridge, I. S. In migrating fibroblasts recycling receptors are concentrated in narrow tubules in the pericentriolar area and then routed to the plasma membrane of the leading lamella. J. Cell Biol. 125, 1265–1274 (1994).

    Article  CAS  Google Scholar 

  33. De Brabander, M., Nuydens, R., Geerts, H. & Hopkins, C. R. Dynamic behavior of the transferrin receptor followed in living epidermoid carcinoma (A431) cells with nanovid microscopy. Cell Motil. Cytoskeleton 9, 30–47 (1988).

    Article  CAS  Google Scholar 

  34. Sheff, D., Pelletier, L., O'Connell, C. B., Warren, G. & Mellman, I. Transferrin receptor recycling in the absence of perinuclear recycling endosomes. J. Cell Biol. 156, 797–804 (2002).

    Article  CAS  Google Scholar 

  35. Mayhew, T. M., Lucocq, J. M. & Griffiths, G. Relative labelling index: a novel stereological approach to test for non-random immunogold labelling of organelles and membranes on transmission electron microscopy thin sections. J. Microsc. 205, 153–164 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues for their generous gifts of reagents. This work is supported by the Medical Research Council (Grants G9722026, G0001128) and Biotechnology and Biological Sciences Research Council (Grant BB/C512929/1). O.J.D. was supported by a BBSRC research studentship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to experimental work and data analysis. O.J.D., V.J.A. and P.G.W. contributed to project planning.

Corresponding authors

Correspondence to Victoria J. Allan or Philip G. Woodman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4 and Supplementary Movie Legends (PDF 720 kb)

Supplementary Information

Supplementary Movie 1 (MOV 4148 kb)

Supplementary Information

Supplementary Movie 2 (MOV 4506 kb)

Supplementary Information

Supplementary Movie 3 (MOV 6459 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Driskell, O., Mironov, A., Allan, V. et al. Dynein is required for receptor sorting and the morphogenesis of early endosomes. Nat Cell Biol 9, 113–120 (2007). https://doi.org/10.1038/ncb1525

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1525

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing