Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1

Abstract

Proper neutrophil migration into inflammatory sites ensures host defense without tissue damage. Phosphoinositide 3-kinase (PI(3)K) and its lipid product phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) regulate cell migration, but the role of PtdIns(3,4,5)P3-degrading enzymes in this process is poorly understood. Here, we show that Src homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1), a PtdIns(3,4,5)P3 phosphatase, is a key regulator of neutrophil migration. Genetic inactivation of SHIP1 led to severe defects in neutrophil polarization and motility. In contrast, loss of the PtdIns(3,4,5)P3 phosphatase PTEN had no impact on neutrophil chemotaxis. To study PtdIns(3,4,5)P3 metabolism in living primary cells, we generated a novel transgenic mouse (AktPH–GFP Tg) expressing a bioprobe for PtdIns(3,4,5)P3. Time-lapse footage showed rapid, localized binding of AktPH–GFP to the leading edge membrane of chemotaxing ship1+/+AktPH–GFP Tg neutrophils, but only diffuse localization in ship1−/−AktPH–GFP Tg neutrophils. By directing where PtdIns(3,4,5)P3 accumulates, SHIP1 governs the formation of the leading edge and polarization required for chemotaxis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Granulocyte-specific PTEN-deficient mice.
Figure 2: Chemotaxis of neutrophils lacking PtdIns(3,4,5)P3-metabolizing enzymes.
Figure 3: SHIP1 is required for proper polarization and actin polymerization.
Figure 4: Rescue of the phenotypic defects of ship1−/− neutrophils by PI(3)K inhibition.
Figure 5: Generation and characterization of AktPH–GFP Tg neutrophils.
Figure 6: PtdIns(3,4,5)P3–PtdIns(3,4)P2 dynamics during neutrophil migration in the absence of PtdIns(3,4,5)P3-metabolizing enzymes.
Figure 7: A schematic representation of a proposed model for PI(3)K-independent and -dependent polarization in mouse neutrophils.

Similar content being viewed by others

References

  1. Devreotes, P. N. & Zigmond, S. H. Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu. Rev. Cell Biol. 4, 649–686 (1988).

    Article  CAS  Google Scholar 

  2. Niggli, V. Signaling to migration in neutrophils: importance of localized pathways. Int. J. Biochem. Cell Biol. 35, 1619–1038 (2003).

    Article  CAS  Google Scholar 

  3. Park, H. T., Wu, J. & Rao, Y. Molecular control of neuronal migration. Bioessays 24, 821–827 (2002).

    Article  CAS  Google Scholar 

  4. Rickert, P., Weiner, O. D., Wang, F., Bourne, H. R. & Servant, G. Leukocytes navigate by compass: roles of PI3Kγ and its lipid products. Trends Cell Biol. 10, 466–473 (2000).

    Article  CAS  Google Scholar 

  5. Patel, D. D. & Haynes, B. F. Leukocyte homing to synovium. Curr. Dir. Autoimmun. 3, 133–167 (2001).

    Article  CAS  Google Scholar 

  6. Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).

    Article  CAS  Google Scholar 

  7. Moore, M. A. The role of chemoattraction in cancer metastases. Bioessays 23, 674–676 (2001).

    Article  CAS  Google Scholar 

  8. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  Google Scholar 

  9. Stephens, L., Ellson, C. & Hawkins, P. Roles of PI3Ks in leukocyte chemotaxis and phagocytosis. Curr. Opin. Cell Biol. 14, 203–213 (2002).

    Article  CAS  Google Scholar 

  10. Servant, G., Weiner, O. D., Neptune, E. R., Sedat, J. W. & Bourne, H. R. Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Mol. Biol. Cell 10, 1163–1178 (1999).

    Article  CAS  Google Scholar 

  11. Jin, T., Zhang, N., Long, Y., Parent, C. A. & Devreotes, P. N. Localization of the G protein βγ complex in living cells during chemotaxis. Science 287, 1034–1036 (2000).

    Article  CAS  Google Scholar 

  12. Meili, R. et al. Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J. 18, 2092–2105 (1999).

    Article  CAS  Google Scholar 

  13. Servant, G. et al. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287, 1037–1040 (2000).

    Article  CAS  Google Scholar 

  14. Ward, S. G. Do phosphoinositide 3-kinases direct lymphocyte navigation? Trends Immunol. 25, 67–74 (2004).

    Article  CAS  Google Scholar 

  15. Wymann, M. P., Sozzani, S., Altruda, F., Mantovani, A. & Hirsch, E. Lipids on the move: phosphoinositide 3-kinases in leukocyte function. Immunol. Today 21, 260–264 (2000).

    Article  CAS  Google Scholar 

  16. Funamoto, S., Milan, K., Meili, R. & Firtel, R. A. Role of phosphatidylinositol 3′ kinase and a downstream pleckstrin homology domain-containing protein in controlling chemotaxis in dictyostelium. J. Cell Biol. 153, 795–810 (2001).

    Article  CAS  Google Scholar 

  17. Iijima, M. & Devreotes, P. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109, 599–610 (2002).

    Article  CAS  Google Scholar 

  18. Funamoto, S., Meili, R., Lee, S., Parry, L. & Firtel, R. A. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611–623 (2002).

    Article  CAS  Google Scholar 

  19. Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040–1046 (2000).

    Article  CAS  Google Scholar 

  20. Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287, 1046–1049 (2000).

    Article  CAS  Google Scholar 

  21. Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science 287, 1049–1053 (2000).

    Article  CAS  Google Scholar 

  22. Sadhu, C., Masinovsky, B., Dick, K., Sowell, C. G. & Staunton, D. E. Essential role of phosphoinositide 3-kinase δ in neutrophil directional movement. J. Immunol. 170, 2647–2654 (2003).

    Article  CAS  Google Scholar 

  23. Wang, F. et al. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nature Cell Biol. 4, 513–518 (2002).

    Article  CAS  Google Scholar 

  24. Condliffe, A. M. et al. Sequential activation of class IB and class IA PI3K is important for the primed respiratory burst of human but not murine neutrophils. Blood 106, 1432–40 (2005).

    Article  CAS  Google Scholar 

  25. Balla, T. & Varnai, P. Visualizing cellular phosphoinositide pools with GFP-fused protein-modules. Sci. STKE PL3 (2002).

  26. Srinivasan, S. et al. Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J. Cell Biol. 160, 375–385 (2003).

    Article  CAS  Google Scholar 

  27. Vedham, V., Phee, H. & Coggeshall, K. M. Vav activation and function as a rac guanine nucleotide exchange factor in macrophage colony-stimulating factor-induced macrophage chemotaxis. Mol. Cell Biol. 25, 4211–4220 (2005).

    Article  CAS  Google Scholar 

  28. Liu, Q. et al. SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid cell survival. Genes Dev. 13, 786–791 (1999).

    Article  CAS  Google Scholar 

  29. Helgason, C. D. et al. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev. 12, 1610–1620 (1998).

    Article  CAS  Google Scholar 

  30. Frech, M. et al. High affinity binding of inositol phosphates and phosphoinositides to the pleckstrin homology domain of RAC/protein kinase B and their influence on kinase activity. J. Biol. Chem. 272, 8474–8481 (1997).

    Article  CAS  Google Scholar 

  31. Stephens, L. R., Hughes, K. T. & Irvine, R. F. Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature 351, 33–39 (1991).

    Article  CAS  Google Scholar 

  32. Weiner, O. D. Regulation of cell polarity during eukaryotic chemotaxis: the chemotactic compass. Curr. Opin. Cell Biol. 14, 196–202 (2002).

    Article  CAS  Google Scholar 

  33. Postma, M., Bosgraaf, L., Loovers, H. M. & Van Haastert, P. J. Chemotaxis: signalling modules join hands at front and tail. EMBO Rep. 5, 35–40 (2004).

    Article  CAS  Google Scholar 

  34. Suzuki, A. et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol. 8, 1169–1178 (1998).

    Article  CAS  Google Scholar 

  35. Hamada, K. et al. The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev. 19, 2054–2065 (2005).

    Article  CAS  Google Scholar 

  36. Clausen, B. E., Burkhardt, C., Reith, W., Renkawitz, R. & Forster, I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 8, 265–277 (1999).

    Article  CAS  Google Scholar 

  37. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    Article  CAS  Google Scholar 

  38. Kawamoto, S. et al. A novel reporter mouse strain that expresses enhanced green fluorescent protein upon Cre-mediated recombination. FEBS Lett. 470, 263–268 (2000).

    Article  CAS  Google Scholar 

  39. Shitara, H. et al. Non-invasive visualization of sperm mitochondria behavior in transgenic mice with introduced green fluorescent protein (GFP). FEBS Lett. 500, 7–11 (2001).

    Article  CAS  Google Scholar 

  40. Kanegasaki, S. et al. A novel optical assay system for the quantitative measurement of chemotaxis. J. Immunol. Methods 282, 1–11 (2003).

    Article  CAS  Google Scholar 

  41. Terashima, Y. et al. Pivotal function for cytoplasmic protein FROUNT in CCR2-mediated monocyte chemotaxis. Nature Immunol. 6, 827–835 (2005).

    Article  CAS  Google Scholar 

  42. Irie-Sasaki, J. et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409, 349–354 (2001).

    Article  CAS  Google Scholar 

  43. Ferguson, G. J. et al. PI(3)Kγ has an important context-dependent role in neutrophil chemokinesis. Nature Cell Biol. 8, doi:10.1038/ncb1517 (2001).

Download references

Acknowledgements

We thank J. Miyazaki for providing the pCAGGS vector, and L. Stephens, T. Takenawa, S. Koyasu, Y. Fukui, T. Nakano, T. Maehama, Y. Terashima, H. Shitara and members of our laboratories for helpful comments. This work was supported in part by research grants from: Japan Science and Technology Corporation (JST); the Ministry of Education, Culture, Sports, Technology of Japan; Japan Society for the Promotion of Science (JSPS); Grant-in-Aid for Creative Scientific Research; Astellas Foundation for Research on Metabolic Disorders; Ono Medical Research Foundation; and Uehara Memorial Foundation. The research of T.B. was supported by the Intramural Research Program of the National Institute of Child Health and Human Development of the National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko Sasaki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1, S2 and Supplementary Methods (PDF 375 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1963 kb)

Supplementary Information

Supplementary Movie 2 (MOV 1963 kb)

Supplementary Information

Supplementary Movie 3 (MOV 1897 kb)

Supplementary Information

Supplementary Movie 4 (MOV 1890 kb)

Supplementary Information

Supplementary Movie 5 (MOV 1541 kb)

Supplementary Information

Supplementary Movie 6 (MOV 1528 kb)

Supplementary Information

Supplementary Movie 7 (MOV 1672 kb)

Supplementary Information

Supplementary Movie 8 (MOV 1673 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishio, M., Watanabe, Ki., Sasaki, J. et al. Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nat Cell Biol 9, 36–44 (2007). https://doi.org/10.1038/ncb1515

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1515

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing