Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability

Abstract

Investigations aimed at identifying regulators of nuclear architecture in Drosophila demonstrated that cells lacking H3K9 methylation and RNA interference (RNAi) pathway components displayed disorganized nucleoli, ribosomal DNA (rDNA) and satellite DNAs. The levels of H3K9 dimethylation (H3K9me2) in chromatin associated with repeated DNAs decreased dramatically in Su(var)3-9 and dcr-2 (dicer-2) mutant tissues compared with wild type. We also observed a substantial increase in extrachromosomal circular (ecc) repeated DNAs in mutant tissues. The disorganized nucleolus phenotype depends on the presence of Ligase 4 and ecc DNA formation is not induced by removal of cohesin. We conclude that the structural integrity and organization of repeated DNAs and nucleoli are regulated by the H3K9 methylation and RNAi pathways, and other regulators of heterochromatin-mediated silencing. In addition, repeated DNA stability involves suppression of non-homologous end joining (NHEJ) or other recombination pathways. These results suggest a mechanism for how local chromatin structure can regulate genome stability, and the organization of chromosomal elements and nuclear organelles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Su(var) mutants contain multiple nucleoli.
Figure 2: Su(var) mutants have dispersed rDNA foci, each of which forms an ectopic nucleolus.
Figure 3: Satellite DNA organization is disrupted in Su(var)3-9null mutant nuclei.
Figure 4: Analysis of histone modifications in chromatin containing repeated DNA in wild-type and Su(var)3-9null cells.
Figure 5: Levels of extrachromosomal repeated DNAs are significantly increased in Su(var)3-9null mutant tissues compared with wild type.
Figure 6: The RNAi pathway is also required to maintain the structural integrity of repeated DNAs and the nucleolus.
Figure 7: Effects of Ligase 4 and cohesin mutants on ectopic nucleolus and eccDNA formation.
Figure 8: A schematic representation of a model for regulation of nuclear architecture by the H3K9 methylation and RNAi pathways.

Similar content being viewed by others

References

  1. Francastel, C., Schubeler, D., Martin, D. I. & Groudine, M. Nuclear compartmentalization and gene activity. Nature Rev. Mol. Cell Biol. 1, 137–143 (2000).

    Article  CAS  Google Scholar 

  2. Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nature Rev. Genet. 2, 292–301 (2001).

    Article  CAS  Google Scholar 

  3. John, B. The biology of heterochromatin. in Heterochromatin: Molecular and Structural Aspects (ed. Verma, R. S.) 1–147 (Cambridge University Press, Cambridge, 1988).

    Google Scholar 

  4. Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nature Rev. Mol. Cell Biol. 6, 838–849 (2005).

    Article  CAS  Google Scholar 

  5. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  Google Scholar 

  6. Muller, H. J. Types of visible variations induced by X-rays in Drosophila. J. Genet. 22, 299–334 (1930).

    Article  Google Scholar 

  7. Schotta, G., Ebert, A., Dorn, R. & Reuter, G. Position-effect variegation and the genetic dissection of chromatin regulation in Drosophila. Semin. Cell Dev. Biol. 14, 67–75 (2003).

    Article  CAS  Google Scholar 

  8. Pal-Bhadra, M. et al. Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303, 669–672 (2004).

    Article  CAS  Google Scholar 

  9. Grewal, S. I. & Moazed, D. Heterochromatin and epigenetic control of gene expression. Science 301, 798–802 (2003).

    Article  CAS  Google Scholar 

  10. Karpen, G. H., Schaefer, J. E. & Laird, C. D. A Drosophila rRNA gene located in euchromatin is active in transcription and nucleolus formation. Genes Dev. 2, 1745–1763 (1988).

    Article  CAS  Google Scholar 

  11. Santoro, R., Li, J. & Grummt, I. The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nature Genet. 32, 393–396 (2002).

    Article  CAS  Google Scholar 

  12. Pikaard, C. S. The epigenetics of nucleolar dominance. Trends Genet. 16, 495–500 (2000).

    Article  CAS  Google Scholar 

  13. Hawley, R. S. & Marcus, C. H. Recombinational controls of rDNA redundancy in Drosophila. Annu. Rev. Genet. 23, 87–120 (1989).

    Article  CAS  Google Scholar 

  14. Blander, G. & Guarente, L. The Sir2 family of protein deacetylases. Annu. Rev. Biochem. 73, 417–435 (2004).

    Article  CAS  Google Scholar 

  15. Tollervey, D., Lehtonen, H., Jansen, R., Kern, H. & Hurt, E. C. Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72, 443–457 (1993).

    Article  CAS  Google Scholar 

  16. Spradling, A. & Orr-Weaver, T. Regulation of DNA replication during Drosophila development. Annu. Rev. Genet. 21, 373–403 (1987).

    Article  CAS  Google Scholar 

  17. Schotta, G. et al. Central role of Drosophila SU(VAR)3–9 in histone H3K9 methylation and heterochromatic gene silencing. EMBO J. 21, 1121–1131 (2002).

    Article  CAS  Google Scholar 

  18. Hirt, B. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26, 365–369 (1967).

    Article  CAS  Google Scholar 

  19. Pont, G., Degroote, F. & Picard, G. Some extrachromosomal circular DNAs from Drosophila embryos are homologous to tandemly repeated genes. J. Mol. Biol. 195, 447–451 (1987).

    Article  CAS  Google Scholar 

  20. Aravin, A. A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell 5, 337–350 (2003).

    Article  CAS  Google Scholar 

  21. Lin, Y. H. & Keil, R. L. Mutations affecting RNA polymerase I-stimulated exchange and rDNA recombination in yeast. Genetics 127, 31–38 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cohen, S., Yacobi, K. & Segal, D. Extrachromosomal circular DNA of tandemly repeated genomic sequences in Drosophila. Genome Res 13, 1133–1145 (2003).

    Article  CAS  Google Scholar 

  23. Cohen, Z., Bacharach, E. & Lavi, S. Mouse major satellite DNA is prone to eccDNA formation via DNA Ligase IV-dependent pathway. Oncogene 25, 4515–4524 (2006).

    Article  CAS  Google Scholar 

  24. Kobayashi, T. & Ganley, A. R. Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 309, 1581–1584 (2005).

    Article  CAS  Google Scholar 

  25. Nonaka, N. et al. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nature Cell Biol. 4, 89–93 (2002).

    Article  CAS  Google Scholar 

  26. Losada, A., Hirano, M. & Hirano, T. Identification of Xenopus SMC protein complexes required for sister chromatid†cohesion. Genes Dev. 12, 1986–1997 (1998).

    Article  CAS  Google Scholar 

  27. Vakoc, C. R., Mandat, S. A., Olenchock, B. A. & Blobel, G. A. Histone H3 lysine 9 methylation and HP1γ are associated with transcription elongation through mammalian chromatin. Mol Cell 19, 381–391 (2005).

    Article  CAS  Google Scholar 

  28. Sullivan, B. A. & Karpen, G. H. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nature Struct. Mol. Biol. 11, 1076–1083 (2004).

    Article  CAS  Google Scholar 

  29. Jackson, P. K. A new RING for SUMO: wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases. Genes Dev. 15, 3053–3058 (2001).

    Article  CAS  Google Scholar 

  30. Hari, K. L., Cook, K. R. & Karpen, G. H. The Drosophila Su(var)2–10 locus encodes a member of the PIAS protein family and regulates chromosome structure and function. Genes Dev. 15, 1334–1348 (2001).

    Article  CAS  Google Scholar 

  31. Schotta, G. et al. A silencing pathway to induce H3K9 and H4K20 trimethylation at constitutive heterochromatin. Genes Dev. 18, 1251–1262 (2004).

    Article  CAS  Google Scholar 

  32. Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81 (2004).

    Article  CAS  Google Scholar 

  33. Cam, H. P. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nature Genet. 37, 809–819 (2005).

    Article  CAS  Google Scholar 

  34. Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    Article  CAS  Google Scholar 

  35. McKee, B. D. & Karpen, G. H. Drosophila ribosomal RNA genes function as an X–Y pairing site during male meiosis. Cell 61, 61–72 (1990).

    Article  CAS  Google Scholar 

  36. Karpen, G. H., Le, M. H. & Le, H. Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophila female meiosis. Science 273, 118–122 (1996).

    Article  CAS  Google Scholar 

  37. Dernburg, A. F., Sedat, J. W. & Hawley, R. S. Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell 86, 135–146 (1996).

    Article  CAS  Google Scholar 

  38. Cartwright, I. L. et al. Analysis of Drosophila chromatin structure in vivo. Methods Enzymol. 304, 462–496 (1999).

    Article  CAS  Google Scholar 

  39. Critchlow, S. E., Bowater, R. P. & Jackson, S. P. Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr. Biol. 7, 588–598 (1997).

    Article  CAS  Google Scholar 

  40. Glaser, R. L., Karpen, G. H. & Spradling, A. C. Replication forks are not found in a Drosophila minichromosome demonstrating a gradient of polytenization. Chromosoma 102, 15–19 (1992).

    Article  CAS  Google Scholar 

  41. Ivessa, A. S., Zhou, J. Q. & Zakian, V. A. The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100, 479–489 (2000).

    Article  CAS  Google Scholar 

  42. Westphal, T. & Reuter, G. Recombinogenic effects of suppressors of position-effect variegation in Drosophila. Genetics 160, 609–621 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaeberlein, M., McVey, M. & Guarente, L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).

    Article  CAS  Google Scholar 

  44. Osipovich, O. et al. Targeted inhibition of V(D)J recombination by a histone methyltransferase. Nature Immunol. 5, 309–316 (2004).

    Article  CAS  Google Scholar 

  45. Peters, A. H. F. M. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).

    Article  CAS  Google Scholar 

  46. Dorsett, D. et al. Effects of sister chromatid cohesion proteins on cut gene expression during wing development in Drosophila. Development 132, 4743–4753 (2005).

    Article  CAS  Google Scholar 

  47. Austin, R. J., Orr-Weaver, T. L. & Bell, S. P. Drosophila ORC specifically binds to ACE3, an origin of DNA replication control element. Genes Dev. 13, 2639–2649 (1999).

    Article  CAS  Google Scholar 

  48. Kuschak, T. I., Kuschak, B. C., Smith, G. M., Wright, J. A. & Mai, S. Isolation of extrachromosomal elements by histone immunoprecipitation. Biotechniques 30, 1064–1068, 1070–1072 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank: J. Birchler (for hlsΔ215), R. Carthew (for DCR2L811fsx), D. Dorsett (for SMC1 antibody), S. Hawley (for smc1exc461), F. Gao (for Ago251B), T. Jenuwein (for H3K9me2 antibody), K. M. Pollard (for fibrillarin antibody), G. Reuter (for Su(var)3-9 alleles 6 and 17) and J. Rine (for dSir217); S. Weiss for experimental contributions; A. Dernburg for help with FISH experiments; and A. Blanco (formerly Metamorph) for assistance with volumetric analysis. We thank N. Bhalla, A. Dernburg, S. Erhart, P. Heun, B. Mellone, A. Minoda and W. Zhang for helpful discussions and critical comments on the manuscript. This work was supported by a National Institutes of Health (NIH) grant, R01GM061169.

Author information

Authors and Affiliations

Authors

Contributions

I.P. performed all the experiments, and J.P. and G.K. collaborated on data analysis and project planning.

Corresponding author

Correspondence to Gary H. Karpen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary table S1 (PDF 183 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, J., Karpen, G. H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 9, 25–35 (2007). https://doi.org/10.1038/ncb1514

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1514

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing