Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8–IRSp53 complex

Abstract

Actin-crosslinking proteins organize actin into highly dynamic and architecturally diverse subcellular scaffolds that orchestrate a variety of mechanical processes, including lamellipodial and filopodial protrusions in motile cells. How signalling pathways control and coordinate the activity of these crosslinkers is poorly defined. IRSp53, a multi-domain protein that can associate with the Rho-GTPases Rac and Cdc42, participates in these processes mainly through its amino-terminal IMD (IRSp53 and MIM domain). The isolated IMD has actin-bundling activity in vitro and is sufficient to induce filopodia in vivo. However, the manner of regulation of this activity in the full-length protein remains largely unknown. Eps8 is involved in actin dynamics through its actin barbed-ends capping activity and its ability to modulate Rac activity. Moreover, Eps8 binds to IRSp53. Here, we describe a novel actin crosslinking activity of Eps8. Additionally, Eps8 activates and synergizes with IRSp53 in mediating actin bundling in vitro, enhancing IRSp53-dependent membrane extensions in vivo. Cdc42 binds to and controls the cellular distribution of the IRSp53–Eps8 complex, supporting the existence of a Cdc42–IRSp53–Eps8 signalling pathway. Consistently, Cdc42-induced filopodia are inhibited following individual removal of either IRSp53 or Eps8. Collectively, these results support a model whereby the synergic bundling activity of the IRSp53–Eps8 complex, regulated by Cdc42, contributes to the generation of actin bundles, thus promoting filopodial protrusions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IRSp53 binds Eps8 through a multi-surfaces interaction.
Figure 2: IRSp53 and Eps8 cooperate in bundling actin filaments in vitro.
Figure 3: Eps8 enhances IRSp53-mediated membrane protrusive activity in vivo.
Figure 4: IRSp53-mediated membrane protrusions require Eps8, but not WAVE complex components or N-WASP.
Figure 5: IRSp53 modulates Eps8 localization downstream Cdc42.
Figure 6: The IRSp53–Eps8 complex is required for Cdc42-induced filopodia formation.

Similar content being viewed by others

References

  1. Pollard, T. D. The cytoskeleton, cellular motility and the reductionist agenda. Nature 422, 741–745 (2003).

    Article  CAS  Google Scholar 

  2. Pantaloni, D., Le Clainche, C. & Carlier, M. F. Mechanism of actin-based motility. Science 292, 1502–1506 (2001).

    Article  CAS  Google Scholar 

  3. Tilney, L. G., Connelly, P. S., Vranich, K. A., Shaw, M. K. & Guild, G. M. Why are two different cross-linkers necessary for actin bundle formation in vivo and what does each cross-link contribute? J. Cell Biol. 143, 121–133 (1998).

    Article  CAS  Google Scholar 

  4. Tseng, Y. et al. How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response. Biochem. Biophys. Res. Commun. 334, 183–192 (2005).

    Article  CAS  Google Scholar 

  5. Tseng, Y., Fedorov, E., McCaffery, J. M., Almo, S. C. & Wirtz, D. Micromechanics and ultrastructure of actin filament networks crosslinked by human fascin: a comparison with α-actinin. J. Mol. Biol. 310, 351–366 (2001).

    Article  CAS  Google Scholar 

  6. Revenu, C., Athman, R., Robine, S. & Louvard, D. The co-workers of actin filaments: from cell structures to signals. Nature Rev. Mol. Cell Biol. 5, 635–646 (2004).

    Article  CAS  Google Scholar 

  7. Kreis, T. & Vale, R. D. Guidebook to the Cytoskeletal and Motor Proteins 2nd edn (Oxford University Press, Oxford, 1999).

    Google Scholar 

  8. Faix, J. & Rottner, K. The making of filopodia. Curr. Opin. Cell Biol. 18, 18–25 (2006).

    Article  CAS  Google Scholar 

  9. Koleske, A. J. Do filopodia enable the growth cone to find its way? Sci. STKE pe20 (2003).

  10. Svitkina, T. M. et al. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160, 409–421 (2003).

    Article  CAS  Google Scholar 

  11. Bear, J. E. et al. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109, 509–521 (2002).

    Article  CAS  Google Scholar 

  12. Schirenbeck, A. et al. The bundling activity of vasodilator-stimulated phosphoprotein is required for filopodium formation. Proc. Natl Acad. Sc.i USA 103, 7694–7699 (2006).

    Article  CAS  Google Scholar 

  13. Schirenbeck, A., Arasada, R., Bretschneider, T., Schleicher, M. & Faix, J. Formins and VASPs may co-operate in the formation of filopodia. Biochem. Soc. Trans 33, 1256–1259 (2005).

    Article  CAS  Google Scholar 

  14. Romero, S. et al. Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119, 419–429 (2004).

    Article  CAS  Google Scholar 

  15. Kovar, D. R., Harris, E. S., Mahaffy, R., Higgs, H. N. & Pollard, T. D. Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell 124, 423–435 (2006).

    Article  CAS  Google Scholar 

  16. Pollard, T. D. Formins coming into focus. Dev. Cell 6, 312–314 (2004).

    Article  CAS  Google Scholar 

  17. Mogilner, A. & Rubinstein, B. The physics of filopodial protrusion. Biophys. J. 89, 782–795 (2005).

    Article  CAS  Google Scholar 

  18. Yeh, T. C., Ogawa, W., Danielsen, A. G. & Roth, R. A. Characterization and cloning of a 58/53-kDa substrate of the insulin receptor tyrosine kinase. J. Biol. Chem. 271, 2921–2928 (1996).

    Article  CAS  Google Scholar 

  19. Krugmann, S. et al. Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr. Biol. 11, 1645–1655 (2001).

    Article  CAS  Google Scholar 

  20. Yamagishi, A., Masuda, M., Ohki, T., Onishi, H. & Mochizuki, N. A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein. J. Biol. Chem. 279, 14929–14936 (2004).

    Article  CAS  Google Scholar 

  21. Govind, S., Kozma, R., Monfries, C., Lim, L. & Ahmed, S. Cdc42Hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing the 58-kD insulin receptor substrate to filamentous actin. J. Cell Biol. 152, 579–594 (2001).

    Article  CAS  Google Scholar 

  22. Nakagawa, H. et al. IRSp53 is colocalised with WAVE2 at the tips of protruding lamellipodia and filopodia independently of Mena. J. Cell Sci. 116, 2577–2583 (2003).

    Article  CAS  Google Scholar 

  23. Connolly, B. A., Rice, J., Feig, L. A. & Buchsbaum, R. J. Tiam1–IRSp53 complex formation directs specificity of rac-mediated actin cytoskeleton regulation. Mol. Cell Biol. 25, 4602–4614 (2005).

    Article  CAS  Google Scholar 

  24. Choi, J. et al. Regulation of dendritic spine morphogenesis by insulin receptor substrate 53, a downstream effector of Rac1 and Cdc42 small GTPases. J. Neurosci. 25, 869–879 (2005).

    Article  CAS  Google Scholar 

  25. Miki, H., Yamaguchi, H., Suetsugu, S. & Takenawa, T. IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408, 732–735 (2000).

    Article  CAS  Google Scholar 

  26. Millard, T. H. et al. Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J. 24, 240–250 (2005).

    Article  CAS  Google Scholar 

  27. Funato, Y. et al. IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness. Cancer Res. 64, 5237–5244 (2004).

    Article  CAS  Google Scholar 

  28. Innocenti, M. et al. Phosphoinositide 3-kinase activates Rac by entering in a complex with Eps8, Abi1, and Sos-1. J. Cell Biol. 160, 17–23 (2003).

    Article  CAS  Google Scholar 

  29. Innocenti, M. et al. Mechanisms through which Sos-1 coordinates the activation of Ras and Rac. J. Cell Biol. 156, 125–136 (2002).

    Article  CAS  Google Scholar 

  30. Scita, G. et al. EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401, 290–293 (1999).

    Article  CAS  Google Scholar 

  31. Disanza, A. et al. Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nature Cell Biol. 6, 1180–1188 (2004).

    Article  CAS  Google Scholar 

  32. Disanza, A. et al. Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement. Cell. Mol. Life Sci. 62, 955–970 (2005).

    Article  CAS  Google Scholar 

  33. Mongiovi, A. M. et al. A novel peptide-SH3 interaction. EMBO J. 18, 5300–5309 (1999).

    Article  CAS  Google Scholar 

  34. Offenhauser, N. et al. The eps8 family of proteins links growth factor stimulation to actin reorganization generating functional redundancy in the Ras/Rac pathway. Mol. Biol. Cell 15, 91–98 (2004).

    Article  Google Scholar 

  35. Fujiwara, T., Mammoto, A., Kim, Y. & Takai, Y. Rho small G-protein-dependent binding of mDia to an Src homology 3 domain-containing IRSp53/BAIAP2. Biochem. Biophys. Res. Commun. 271, 626–629 (2000).

    Article  CAS  Google Scholar 

  36. Stradal, T. et al. The Abl interactor proteins localize to sites of actin polymerization at the tips of lamellipodia and filopodia. Curr. Biol. 11, 891–895 (2001).

    Article  CAS  Google Scholar 

  37. Rottner, K., Behrendt, B., Small, J. V. & Wehland, J. VASP dynamics during lamellipodia protrusion. Nature Cell Biol. 1, 321–322 (1999).

    Article  CAS  Google Scholar 

  38. Samarin, S. et al. How VASP enhances actin-based motility. J. Cell Biol. 163, 131–142 (2003).

    Article  CAS  Google Scholar 

  39. Krause, M., Bear, J. E., Loureiro, J. J. & Gertler, F. B. The Ena/VASP enigma. J. Cell Sci. 115, 4721–4726 (2002).

    Article  CAS  Google Scholar 

  40. Auerbuch, V., Loureiro, J. J., Gertler, F. B., Theriot, J. A. & Portnoy, D. A. Ena/VASP proteins contribute to Listeria monocytogenes pathogenesis by controlling temporal and spatial persistence of bacterial actin-based motility. Mol. Microbiol. 49, 1361–1375 (2003).

    Article  CAS  Google Scholar 

  41. Bear, J. E. et al. Negative regulation of fibroblast motility by Ena/VASP proteins. Cell 101, 717–728 (2000).

    Article  CAS  Google Scholar 

  42. Miki, H. & Takenawa, T. WAVE2 serves a functional partner of IRSp53 by regulating its interaction with Rac. Biochem. Biophys. Res. Commun. 293, 93–99 (2002).

    Article  CAS  Google Scholar 

  43. Czuchra, A. et al. Cdc42 is not essential for filopodium formation, directed migration, cell polarization, and mitosis in fibroblastoid cells. Mol. Biol. Cell 16, 4473–4484 (2005).

    Article  CAS  Google Scholar 

  44. Tilney, L. G., Connelly, P. S., Vranich, K. A., Shaw, M. K. & Guild, G. M. Actin filaments and microtubules play different roles during bristle elongation in Drosophila. J. Cell Sci. 113, 1255–1265 (2000).

    CAS  PubMed  Google Scholar 

  45. Tilney, L. G., Tilney, M. S. & Guild, G. M. F actin bundles in Drosophila bristles. I. Two filament cross-links are involved in bundling. J. Cell Biol. 130, 629–638 (1995).

    Article  CAS  Google Scholar 

  46. Tseng, Y., Schafer, B. W., Almo, S. C. & Wirtz, D. Functional synergy of actin filament cross-linking proteins. J. Biol. Chem. 277, 25609–25616 (2002).

    Article  CAS  Google Scholar 

  47. Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl Acad. Sci. USA 100, 11980–11985 (2003).

    Article  CAS  Google Scholar 

  48. Innocenti, M. et al. Abi1 is essential for the formation and activation of a WAVE2 signalling complex. Nature Cell Biol. 6, 319–327 (2004).

    Article  CAS  Google Scholar 

  49. Innocenti, M. et al. Abi1 regulates the activity of N-WASP and WAVE in distinct actin-based processes. Nature Cell Biol. 7, 969–976 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants: from AIRC (Associazione Italiana Ricerca sul Cancro) to G.S.; from the Human Science Frontier Program to G.S. (grant # RGP0072/2003-C); from the Italian Ministry of Health (grant R.F. 02/184) to G.S.; from European Community (VI Framework) to G.S.; from the European Molecular Biology Organization (EMBO) to M.H.; from Deutsche Forschungsgemeinschaft (DFG) to T.E.B.S. and H.J.K. (SPP 1150 and Ri192/24-1, respectively); from Associazione Italiana per la Ricerca sul Cancro European Community (VI Framework), Ministero della Salute, Ministero dell' Università e della Ricerca (MIUR), Fondazione Monzino to P.P.D.F. We would like to thank M. Garre, M. Faretta and D. Dominique (from M.-F. Carlier's laboratory) for technical help and S. Confalonieri for assistance with bioinformatic analysis. We are especially thankful to: M.-F. Carlier for continuous support and advice, and for critically reading the manuscript; A. Hall, T. Takenawa and S. Ahmed for providing IRSp53 constructs; and C. Brakebusch for cdc42 null cells.

Author information

Authors and Affiliations

Authors

Contributions

A.D., S.M and M.E. contributed to experimental work, project planning and data analysis. S.G., E.F., A.S., F.M. and K.B. contributed to experimental work. A.C., H..K., P.P.D.F. and T.E.B.S contributed to project planning and data analysis.

Corresponding author

Correspondence to Giorgio Scita.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S5, S6, S7 and S8 (PDF 1285 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Disanza, A., Mantoani, S., Hertzog, M. et al. Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8–IRSp53 complex. Nat Cell Biol 8, 1337–1347 (2006). https://doi.org/10.1038/ncb1502

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1502

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing