Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity

Abstract

Formation of a bipolar spindle is essential for faithful chromosome segregation at mitosis. Because centrosomes define spindle poles, defects in centrosome number and structural organization can lead to a loss of bipolarity1. In addition, microtubule-mediated pulling and pushing forces acting on centrosomes and chromosomes are also important for bipolar spindle formation2. Polo-like kinase 1 (Plk1) is a highly conserved Ser/Thr kinase that has essential roles in the formation of a bipolar spindle with focused poles3,4,5. However, the mechanism by which Plk1 regulates spindle-pole formation is poorly understood. Here, we identify a novel centrosomal substrate of Plk1, Kizuna (Kiz), depletion of which causes fragmentation and dissociation of the pericentriolar material from centrioles at prometaphase, resulting in multipolar spindles. We demonstrate that Kiz is critical for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation, and suggest that Plk1 maintains the integrity of the spindle poles by phosphorylating Kiz.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kiz is a centrosomal protein required for bipolar spindle formation.
Figure 2: Kiz-depletion induces the fragmentation and dissociation of expanded pericentriolar material from centrioles.
Figure 3: Microtubule-mediated forces contribute to the fragmentation of pericentriolar material in Kiz-depleted cells.
Figure 4: Plk1-mediated Kiz phosphorylation is essential for mitotic centrosome stabilization.
Figure 5: Plk1 controls Kiz association with PCM component through Thr 379 phosphorylation.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Nigg, E. A. Centrosome aberrations: cause or consequence of cancer progression? Nature Rev. Cancer 2, 815–825 (2002).

    Article  CAS  Google Scholar 

  2. Scholey, J. M., Brust Mascher, I. & Mogilner, A. Cell division. Nature 422, 746–752 (2003).

    Article  CAS  Google Scholar 

  3. Lane, H. A. & Nigg, E. A. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol. 135, 1701–1713 (1996).

    Article  CAS  Google Scholar 

  4. Sumara, I. et al. Roles of polo-like kinase 1 in the assembly of functional mitotic spindles. Curr. Biol. 14, 1712–1722 (2004).

    Article  CAS  Google Scholar 

  5. van Vugt, M. A. et al. Polo-like kinase-1 is required for bipolar spindle formation but is dispensable for anaphase promoting complex/Cdc20 activation and initiation of cytokinesis. J. Biol. Chem. 279, 36841–36854 (2004).

    Article  CAS  Google Scholar 

  6. Bornens, M. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. 14, 25–34 (2002).

    Article  CAS  Google Scholar 

  7. Palazzo, R. E., Vogel, J. M., Schnackenberg, B. J., Hull, D. R. & Wu, X. Centrosome maturation. Curr. Top. Dev. Biol. 49, 449–470 (2000).

    Article  CAS  Google Scholar 

  8. Blagden, S. P. & Glover, D. M. Polar expeditions — provisioning the centrosome for mitosis. Nature Cell Biol. 5, 505–511 (2003).

    Article  CAS  Google Scholar 

  9. Fry, A. M., Mayor, T. & Nigg, E. A. Regulating centrosomes by protein phosphorylation. Curr. Top. Dev. Biol. 49, 291–312 (2000).

    Article  CAS  Google Scholar 

  10. Barr, F. A., Sillje, H. H. & Nigg, E. A. Polo-like kinases and the orchestration of cell division. Nature Rev. Mol. Cell Biol. 5, 429–440 (2004).

    Article  CAS  Google Scholar 

  11. Fukunaga, R. & Hunter, T. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 16, 1921–1933 (1997).

    Article  CAS  Google Scholar 

  12. Tachibana, K. E., Gonzalez, M. A., Guarguaglini, G., Nigg, E. A. & Laskey, R. A. Depletion of licensing inhibitor geminin causes centrosome overduplication and mitotic defects. EMBO Rep. 6, 1052–1057 (2005).

    Article  CAS  Google Scholar 

  13. Saunders, W. Centrosomal amplification and spindle multipolarity in cancer cells. Semin. Cancer Biol. 15, 25–32 (2005).

    Article  CAS  Google Scholar 

  14. Hut, H. M. et al. Centrosomes split in the presence of impaired DNA integrity during mitosis. Mol. Biol. Cell 14, 1993–2004 (2003).

    Article  CAS  Google Scholar 

  15. Abal, M., Keryer, G. & Bornens, M. Centrioles resist forces applied on centrosomes during G2/M transition. Biol. Cell 97, 425–434 (2005).

    Article  CAS  Google Scholar 

  16. Paoletti, A., Moudjou, M., Paintrand, M., Salisbury, J. L. & Bornens, M. Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles. J. Cell Sci. 109, 3089–3102 (1996).

    CAS  PubMed  Google Scholar 

  17. Ishikawa, H., Kubo, A., Tsukita, S. & Tsukita, S. Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nature Cell Biol. 7, 517–524 (2005).

    Article  CAS  Google Scholar 

  18. Mogensen, M. M., Malik, A., Piel, M., Bouckson Castaing, V. & Bornens, M. Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J. Cell Sci. 113, 3013–3023 (2000).

    CAS  PubMed  Google Scholar 

  19. Dictenberg, J. B. et al. Pericentrin and γ-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J. Cell Biol. 141, 163–174 (1998).

    Article  CAS  Google Scholar 

  20. Takahashi, M., Yamagiwa, A., Nishimura, T., Mukai, H. & Ono, Y. Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring γ-tubulin ring complex. Mol. Biol. Cell 13, 3235–3245 (2002).

    Article  CAS  Google Scholar 

  21. Murphy, S. M., Urbani, L. & Stearns, T. The mammalian γ-tubulin complex contains homologues of the yeast spindle pole body components spc97p and spc98p. J. Cell Biol. 141, 663–674 (1998).

    Article  CAS  Google Scholar 

  22. Levesque, A. A. & Compton, D. A. The chromokinesin Kid is necessary for chromosome arm orientation and oscillation, but not congression, on mitotic spindles. J. Cell Biol. 154, 1135–1146 (2001).

    Article  CAS  Google Scholar 

  23. Tokai-Nishizumi, N., Ohsugi, M., Suzuki, E. & Yamamoto, T. The chromokinesin Kid is required for maintenance of proper metaphase spindle size. Mol. Biol. Cell 16, 5455–5463 (2005).

    Article  CAS  Google Scholar 

  24. Nakajima, H., Toyoshima Morimoto, F., Taniguchi, E. & Nishida, E. Identification of a consensus motif for Plk (Polo-like kinase) phosphorylation reveals Myt1 as a Plk1 substrate. J. Biol. Chem. 278, 25277–25280 (2003).

    Article  CAS  Google Scholar 

  25. Davis, F. M., Tsao, T. Y., Fowler, S. K. & Rao, P. N. Monoclonal antibodies to mitotic cells. Proc. Natl Acad. Sci. USA 80, 2926–2930 (1983).

    Article  CAS  Google Scholar 

  26. Kumagai, A. & Dunphy, W. G. Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science 273, 1377–1380 (1996).

    Article  CAS  Google Scholar 

  27. Elia, A. E. et al. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell 115, 83–95 (2003).

    Article  CAS  Google Scholar 

  28. Merdes, A., Heald, R., Samejima, K., Earnshaw, W. C. & Cleveland, D. W. Formation of spindle poles by dynein/dynactin-dependent transport of NuMA. J. Cell Biol. 149, 851–862 (2000).

    Article  CAS  Google Scholar 

  29. Garrett, S., Auer, K., Compton, D. A. & Kapoor, T. M. hTPX2 is required for normal spindle morphology and centrosome integrity during vertebrate cell division. Curr. Biol. 12, 2055–2059 (2002).

    Article  CAS  Google Scholar 

  30. Zimmerman, W. C., Sillibourne, J., Rosa, J. & Doxsey, S. J. Mitosis-specific anchoring of γ-tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol. Biol. Cell 15, 3642–3657 (2004).

    Article  CAS  Google Scholar 

  31. Sumara, I. et al. The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol. Cell 9, 515–525 (2002).

    Article  CAS  Google Scholar 

  32. Boyle, W. J., van der Geer, P. & Hunter, T. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods. Enzymol. 201, 110–149 (1991).

    Article  CAS  Google Scholar 

  33. Ohsugi, M. et al. Cdc2-mediated phosphorylation of Kid controls its distribution to spindle and chromosomes. EMBO J. 22, 2091–2103 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Fukunaga for λGEX–5 HeLa cDNA library and kind advice on solid-phase phosphorylation screening, Y. Ono for antibodies against pericentrin–kendrin, CG-NAP and GCP2, and pTB701–HA–kendrin expression plasmids. S. Tsukita for antibodies against ODF2 and ninein, Y. Watanabe for Plk1 siRNA, N. Nomura for help in RNAi experiments. R. F. Whittier, Y. Watanabe, K. Tanaka, N. Tokai-Nishizumi and K. Yokoyama for helpful discussions. This work was supported by grants-in-aid from the Japan Society for the Promotion of Science and from the Ministry of Education, Cultures, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Yamamoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3 and Supplementary Data (PDF 4489 kb)

Supplementary Movie 1 (MOV 2464 kb)

Supplementary Movie 2 (MOV 1433 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oshimori, N., Ohsugi, M. & Yamamoto, T. The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity. Nat Cell Biol 8, 1095–1101 (2006). https://doi.org/10.1038/ncb1474

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1474

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing