Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway

A Corrigendum to this article was published on 01 November 2006

Abstract

Dysfunction of the endoplasmic reticulum (ER) has been reported in a variety of human pathologies, including cancer. However, the contribution of the ER to the early stages of normal cell transformation is largely unknown. Using primary human melanocytes and biopsies of human naevi (moles), we show that the extent of ER stress induced by cellular oncogenes may define the mechanism of activation of premature senescence. Specifically, we found that oncogenic forms of HRAS (HRASG12V) but not its downstream target BRAF (BRAFV600E), engaged a rapid cell-cycle arrest that was associated with massive vacuolization and expansion of the ER. However, neither p53, p16INK4a nor classical senescence markers – such as foci of heterochromatin or DNA damage – were able to account for the specific response of melanocytes to HRASG12V. Instead, HRASG12V-driven senescence was mediated by the ER-associated unfolded protein response (UPR). The impact of HRAS on the UPR was selective, as it was poorly induced by activated NRAS (more frequently mutated in melanoma than HRAS). These results argue against premature senescence as a converging mechanism of response to activating oncogenes and support a direct role of the ER as a gatekeeper of tumour control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential senescence programmes induced by HRASV12 and BRAFE600 in primary melanocytes.
Figure 2: Classical markers of senescence are not essential for HRASV12-driven melanocyte senescence.
Figure 3: Expansion of the ER in HRASV12-senescent melanocytes.
Figure 4: Specific activation of the unfolded protein response by HRASV12.
Figure 5: Comparative analysis of the impact of HRASG12V and NRASQ61R in normal human melanocytes.
Figure 6: Analysis of ER stress markers in human naevi.

Similar content being viewed by others

References

  1. Jemal, A. et al. Cancer statistics, 2005. CA Cancer J. Clin. 55, 10–30 (2005).

    Article  Google Scholar 

  2. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  Google Scholar 

  3. Pollock, P. M. et al. High frequency of BRAF mutations in nevi. Nature Genet. 33, 19–20 (2003).

    Article  CAS  Google Scholar 

  4. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    Article  CAS  Google Scholar 

  5. Strungs, I. Common and uncommon variants of melanocytic naevi. Pathology 36, 396–403 (2004).

    Article  Google Scholar 

  6. Papp, T. et al. Mutational analysis of the N-ras, p53, p16INK4a, CDK4, and MC1R genes in human congenital melanocytic naevi. J. Med. Genet. 36, 610–614 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bastian, B. C., LeBoit, P. E. & Pinkel, D. Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. Am. J. Pathol. 157, 967–972 (2000).

    Article  CAS  Google Scholar 

  8. Barnhill, R. L. et al. Atypical Spitz nevi/tumors: lack of consensus for diagnosis, discrimination from melanoma, and prediction of outcome. Hum. Pathol. 30, 513–520 (1999).

    Article  CAS  Google Scholar 

  9. Maldonado, J. L., Timmerman, L., Fridlyand, J. & Bastian, B. C. Mechanisms of cell-cycle arrest in Spitz nevi with constitutive activation of the MAP-kinase pathway. Am. J. Pathol. 164, 1783–1787 (2004).

    Article  CAS  Google Scholar 

  10. Collado, M. & Serrano, M. The power and the promise of oncogene-induced senescence markers. Nature Rev. Cancer 6, 472–476 (2006).

    Article  CAS  Google Scholar 

  11. Shay, J. W. & Roninson, I. B. Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23, 2919–2933 (2004).

    Article  CAS  Google Scholar 

  12. Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

    Article  CAS  Google Scholar 

  13. Mallette, F. A., Goumard, S., Gaumont-Leclerc, M. F., Moiseeva, O. & Ferbeyre, G. Human fibroblasts require the Rb family of tumor suppressors, but not p53, for PML-induced senescence. Oncogene 23, 91–99 (2004).

    Article  CAS  Google Scholar 

  14. Federovitch, C. M., Ron, D. & Hampton, R. Y. The dynamic ER: experimental approaches and current questions. Curr. Opin. Cell Biol. 17, 409–414 (2005).

    Article  CAS  Google Scholar 

  15. Schroder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789 (2005).

    Article  Google Scholar 

  16. Lee, A. S. The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem. Sci. 26, 504–510 (2001).

    Article  CAS  Google Scholar 

  17. Lassot, I. et al. ATF4 degradation relies on a phosphorylation-dependent interaction with the SCF(βTrCP) ubiquitin ligase. Mol. Cell. Biol. 21, 2192–2202 (2001).

    Article  CAS  Google Scholar 

  18. Vallejo, M., Ron, D., Miller, C. P. & Habener, J. F. C/ATF, a member of the activating transcription factor family of DNA-binding proteins, dimerizes with CAAT/enhancer-binding proteins and directs their binding to cAMP response elements. Proc. Natl Acad. Sci. USA 90, 4679–4683 (1993).

    Article  CAS  Google Scholar 

  19. Harding, H. P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108 (2000).

    Article  CAS  Google Scholar 

  20. Ron, D. & Hampton, R. Y. Membrane biogenesis and the unfolded protein response. J. Cell Biol. 167, 23–25 (2004).

    Article  CAS  Google Scholar 

  21. Jamora, C., Dennert, G. & Lee, A. S. Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc. Natl Acad. Sci. USA 93, 7690–7694 (1996).

    Article  CAS  Google Scholar 

  22. Romero-Ramirez, L. et al. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res. 64, 5943–5947 (2004).

    Article  CAS  Google Scholar 

  23. Xu, C., Bailly-Maitre, B. & Reed, J. C. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest. 115, 2656–2664 (2005).

    Article  CAS  Google Scholar 

  24. Malumbres, M. & Barbacid, M. RAS oncogenes: the first 30 years. Nature Rev. Cancer 3, 459–465 (2003).

    Article  CAS  Google Scholar 

  25. Philips, M. R. Compartmentalized signalling of Ras. Biochem. Soc. Trans. 33, 657–661 (2005).

    Article  CAS  Google Scholar 

  26. Matallanas, D. et al. Distinct utilization of effectors and biological outcomes resulting from site-specific Ras activation: Ras functions in lipid rafts and Golgi complex are dispensable for proliferation and transformation. Mol. Cell. Biol. 26, 100–116 (2006).

    Article  CAS  Google Scholar 

  27. Ackermann, J. et al. Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res. 65, 4005–4011 (2005).

    Article  CAS  Google Scholar 

  28. Li, W., Zhu, T. & Guan, K. L. Transformation potential of Ras isoforms correlates with activation of phosphatidylinositol 3-kinase but not ERK. J. Biol. Chem. 279, 37398–37406 (2004).

    Article  CAS  Google Scholar 

  29. Lin, A. W. et al. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12, 3008–3019 (1998).

    Article  CAS  Google Scholar 

  30. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    Article  CAS  Google Scholar 

  31. Bauer, J. & Bastian, B. Genomic analysis of melanocytic neoplasia. Adv. Dermatol. 21, 81–99 (2005).

    Article  Google Scholar 

  32. Narita, M. & Lowe, S. W. Senescence comes of age. Nature Med. 11, 920–922 (2005).

    Article  CAS  Google Scholar 

  33. Sharpless, N. E. & DePinho, R. A. Cancer: crime and punishment. Nature 436, 636–637 (2005).

    Article  CAS  Google Scholar 

  34. Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660–665 (2005).

    Article  CAS  Google Scholar 

  35. Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005).

    Article  CAS  Google Scholar 

  36. Collado, M. & Serrano, M. The senescent side of tumor suppression. Cell Cycle 4, 1722–1724 (2005).

    Article  CAS  Google Scholar 

  37. Guerra, C. et al. Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4, 111–120 (2003).

    Article  CAS  Google Scholar 

  38. Benanti, J. A. & Galloway, D. A. Normal human fibroblasts are resistant to RAS-induced senescence. Mol. Cell. Biol. 24, 2842–2852 (2004).

    Article  CAS  Google Scholar 

  39. Lowe, S. W., Cepero, E. & Evan, G. Intrinsic tumour suppression. Nature 432, 307–315 (2004).

    Article  CAS  Google Scholar 

  40. te Poele, R. H., Okorokov, A. L., Jardine, L., Cummings, J. & Joel, S. P. DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 62, 1876–1883 (2002).

    CAS  PubMed  Google Scholar 

  41. Ma, Y. & Hendershot, L. M. The role of the unfolded protein response in tumour development: friend or foe? Nature Rev. Cancer 4, 966–977 (2004).

    Article  CAS  Google Scholar 

  42. Li, J. & Lee, A. S. Stress induction of GRP78/BiP and its role in cancer. Curr. Mol. Med. 6, 45–54 (2006).

    Article  CAS  Google Scholar 

  43. Sriburi, R., Jackowski, S., Mori, K. & Brewer, J. W. XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J. Cell Biol. 167, 35–41 (2004).

    Article  CAS  Google Scholar 

  44. Back, S. H., Lee, K., Vink, E. & Kaufman, R. J. Cytoplasmic IRE1α-mediated XBP1 mRNA splicing in the absence of nuclear processing and endoplasmic reticulum stress. J. Biol. Chem. 281, 18691–18706 (2006).

    Article  CAS  Google Scholar 

  45. Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619–633 (2003).

    Article  CAS  Google Scholar 

  46. Blais, J. D. et al. Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol. Cell. Biol. 24, 7469–7482 (2004).

    Article  CAS  Google Scholar 

  47. Dai, D. L., Martinka, M. & Li, G. Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases. J. Clin. Oncol. 23, 1473–1482 (2005).

    Article  CAS  Google Scholar 

  48. Miyauchi, H. et al. Akt negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway. EMBO J. 23, 212–220 (2004).

    Article  CAS  Google Scholar 

  49. Hamanaka, R. B., Bennett, B. S., Cullinan, S. B. & Diehl, J. A. PERK and GCN2 contribute to eIF2α phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway. Mol. Biol. Cell 16, 5493–5501 (2005).

    Article  CAS  Google Scholar 

  50. Ranganathan, A. C., Zhang, L., Adam, A. P. & Aguirre-Ghiso, J. A. Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res. 66, 1702–1711 (2006).

    Article  CAS  Google Scholar 

  51. Wang, Y. et al. Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. J. Biol. Chem. 275, 27013–27020 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Bengtson, T.P. Miller and W.-H. Tang for technical support; K. Zhang for advice with UPR-related dominant-negative constructs; J. Martens for help with the time-lapse microscopy; S. Núñez, E. de Stanchina and S. Lowe for p16 shRNA lentiviral vector and AKT-DN retroviral constructs; K. Guan and A. Vojtek for HA-tagged BRAF pcDNA; D. Peeper for pBabe-puro-BRAF; and W. Tirasophon and T. Ruthowski for ATF-6 and IRE1 antibodies. We also thank G. Núñez, J.A. Esteban, M. Serrano, G. Ferbeyre and A. Dlugosz for helpful suggestions and critical reading of this manuscript. This work was supported by a postdoctoral fellowship from La Ligue Contre le Cancer (C.D); Career Development Awards from the Dermatology Foundation to M.S.S. and M.A.N.; the Elsa U. Pardee Foundation (M.S.S); and National Institutes of Health grants CA107237 (M.S.S), R33 CA95300 (B.C.B.), DK42394 (R.J.K) and A112243 and U01CA83180 (S.B.G). M.S.S. is a V Foundation for Cancer Research Scholar.

Author information

Authors and Affiliations

Authors

Contributions

C.D. and M.S.S. designed the study. C.D., G.A-R., M.V. and M.S.S. performed all studies with primary melanocytes. T.M.J., D.R.F., J.P., S.B.G. and L.S. provided specimens for inital testing of stress factors in human naevi. Common and Spitz naevi shown or mentioned in this study were analysed for HRAS, BRAF and NRAS status by V.B. and B.C.B. V.B. and B.C.B. performed and scored the immunostaining of naevi with antibodies against PDI and GRP78, and M.S.S. performed statistical tests. M.A.N. and R.J.K. provided reagents for the generation of lentiviral vectors expressing shRNA against UPR proteins. C.D. and M.S.S. wrote the manuscript.

Corresponding author

Correspondence to Maria S. Soengas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5, S6 and Supplementary information. (PDF 1555 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denoyelle, C., Abou-Rjaily, G., Bezrookove, V. et al. Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol 8, 1053–1063 (2006). https://doi.org/10.1038/ncb1471

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1471

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing