Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of RNA-polymerase-II-dependent transcription by N-WASP and its nuclear-binding partners

Abstract

The presence of actin in the nucleus has been well established, and several studies have implicated nuclear actin in transcriptional regulation1,2,3. Neuronal Wiskott–Aldrich syndrome protein (N-WASP) is a member of the WASP family of proteins; these proteins function in the cytoplasm as key regulators of cortical actin filament4,5,6. Interestingly, N-WASP has also been observed in the nucleus7,8,9,10,11. However, a potential nuclear function for N-WASP has not been established. Here, we report the identification of nuclear N-WASP within a large nuclear-protein complex containing PSF–NonO (polypyrimidine-tract-binding-protein-associated splicing factor–non-Pou-domain octamer-binding protein/p54nrb), nuclear actin and RNA polymerase II. The PSF–NonO complex is involved in the regulation of many cellular processes12, such as transcription, RNA processing, DNA unwinding and repair. We demonstrate that the interaction of N-WASP with the PSF–NonO complex can couple N-WASP with RNA polymerase II to regulate transcription. We also provide evidence that the potential function of N-WASP in promoting polymerization of nuclear actins has an important role in this process. Based on these results, we propose a nuclear function for N-WASP in transcriptional regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of PSF–NonO complex as an N-WASP binding partner.
Figure 2: Identification of RRM2 motif of NonO as the N-WASP binding site.
Figure 3: Interaction of N-WASP and NonO in a nuclear-protein complex mediates N-WASP regulation of transcription in vitro.
Figure 4: N-WASP regulation of de novo actin polymerization in nuclear extracts and its role in transcription.
Figure 5: N-WASP regulates RNA-polymerase-II-dependent transcription in vivo.

Similar content being viewed by others

References

  1. Blessing, C. A., Ugrinova, G. T. & Goodson, H. V. Actin and ARPs: action in the nucleus. Trends Cell Biol. 14, 435–442 (2004).

    Article  CAS  Google Scholar 

  2. Bettinger, B. T., Gilbert, D. M. & Amberg, D. C. Actin up in the nucleus. Nature Rev. Mol. Cell Biol. 5, 410–415 (2004).

    Article  CAS  Google Scholar 

  3. Pederson, T. & Aebi, U. Actin in the nucleus: what form and what for? J. Struct. Biol. 140, 3–9 (2002).

    Article  CAS  Google Scholar 

  4. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  Google Scholar 

  5. Takenawa, T. & Miki, H. WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J. Cell Sci. 114, 1801–1809 (2001).

    CAS  PubMed  Google Scholar 

  6. Millard, T. H., Sharp, S. J. & Machesky, L. M. Signalling to actin assembly via the WASP (Wiskott–Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem. J. 380, 1–17 (2004).

    Article  CAS  Google Scholar 

  7. Wu, X., Suetsugu, S., Cooper, L. A., Takenawa, T. & Guan, J. L. Focal adhesion kinase regulation of N-WASP subcellular localization and function. J. Biol. Chem. 279, 9565–9576 (2004).

    Article  CAS  Google Scholar 

  8. Bear, J. E., Krause, M. & Gertler, F. B. Regulating cellular actin assembly. Curr. Opin. Cell Biol. 13, 158–166 (2001).

    Article  CAS  Google Scholar 

  9. Vetterkind, S. et al. The rat homologue of Wiskott–Aldrich syndrome protein (WASP)-interacting protein (WIP) associates with actin filaments, recruits N-WASP from the nucleus, and mediates mobilization of actin from stress fibers in favor of filopodia formation. J. Biol. Chem. 277, 87–95 (2002).

    Article  CAS  Google Scholar 

  10. Miki, H., Miura, K. & Takenawa, T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J. 15, 5326–5335 (1996).

    Article  Google Scholar 

  11. Suetsugu, S. & Takenawa, T. Translocation of N-WASP by nuclear localization and export signals into the nucleus modulates expression of HSP90. J. Biol. Chem. 278, 42515–42523 (2003).

    Article  CAS  Google Scholar 

  12. Shav-Tal, Y. & Zipori, D. PSF and p54(nrb)/NonO-multi-functional nuclear proteins. FEBS Lett. 531, 109–114 (2002).

    Article  CAS  Google Scholar 

  13. Zhang, W. W., Zhang, L. X., Busch, R. K., Farres, J. & Busch, H. Purification and characterization of a DNA-binding heterodimer of 52 and 100 kDa from HeLa cells. Biochem. J. 290, 267–272 (1993).

    Article  CAS  Google Scholar 

  14. Peng, R. et al. PSF and p54nrb bind a conserved stem in U5 snRNA. RNA 8, 1334–1347 (2002).

    Article  CAS  Google Scholar 

  15. Emili, A. et al. Splicing and transcription-associated proteins PSF and p54nrb/nonO bind to the RNA polymerase II CTD. RNA 8, 1102–1111 (2002).

    Article  CAS  Google Scholar 

  16. Percipalle, P. et al. An actin-ribonucleoprotein interaction is involved in transcription by RNA polymerase II. Proc. Natl Acad. Sci. USA 100, 6475–6480 (2003).

    Article  CAS  Google Scholar 

  17. Miki, H. & Takenawa, T. Direct binding of the verprolin-homology domain in N-WASP to actin is essential for cytoskeletal reorganization. Biochem. Biophys. Res. Commun. 243, 73–78 (1998).

    Article  CAS  Google Scholar 

  18. Hofmann, W. A. et al. Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nature Cell Biol. 6, 1094–1101 (2004).

    Article  CAS  Google Scholar 

  19. Scheer, U., Hinssen, H., Franke, W. W. & Jockusch, B. M. Microinjection of actin-binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes. Cell 39, 111–122 (1984).

    Article  CAS  Google Scholar 

  20. Hu, P., Wu, S. & Hernandez, N. A role for β-actin in RNA polymerase III transcription. Genes Dev. 18, 3010–3015 (2004).

    Article  CAS  Google Scholar 

  21. Philimonenko, V. V. et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nature Cell Biol. 6, 1165–1172 (2004).

    Article  CAS  Google Scholar 

  22. Kukalev, A., Nord, Y., Palmberg, C., Bergman, T. & Percipalle, P. Actin and hnRNP U cooperate for productive transcription by RNA polymerase II. Nature Struct. Mol. Biol. 12, 238–244 (2005).

    Article  CAS  Google Scholar 

  23. McDonald, D., Carrero, G., Andrin, C., de Vries, G. & Hendzel, M. J. Nucleoplasmic β-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. J. Cell Biol. 172, 541–552 (2006).

    Article  CAS  Google Scholar 

  24. Pellizzoni, L., Charroux, B., Rappsilber, J., Mann, M. & Dreyfuss, G. A functional interaction between the survival motor neuron complex and RNA polymerase II. J. Cell Biol. 152, 75–85 (2001).

    Article  CAS  Google Scholar 

  25. Yang, Y. S. et al. NonO, a non-POU-domain-containing, octamer-binding protein, is the mammalian homolog of Drosophila nonAdiss. Mol. Cell Biol. 13, 5593–5603 (1993).

    Article  CAS  Google Scholar 

  26. Kameoka, S., Duque, P. & Konarska, M. M. p54(nrb) associates with the 5′ splice site within large transcription/splicing complexes. EMBO J. 23, 1782–1791 (2004).

    Article  CAS  Google Scholar 

  27. Yang, Y. S., Yang, M. C., Tucker, P. W. & Capra, J. D. NonO enhances the association of many DNA-binding proteins to their targets. Nucleic Acids Res. 25, 2284–2292 (1997).

    Article  CAS  Google Scholar 

  28. Kiseleva, E. et al. Actin- and protein-4.1-containing filaments link nuclear pore complexes to subnuclear organelles in Xenopus oocyte nuclei. J. Cell Sci. 117, 2481–2490 (2004).

    Article  CAS  Google Scholar 

  29. Naar, A. M., Taatjes, D. J., Zhai, W., Nogales, E. & Tjian, R. Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation. Genes Dev. 16, 1339–1344 (2002).

    Article  CAS  Google Scholar 

  30. Lee, K. A. & Green, M. R. Small-scale preparation of extracts from radiolabeled cells efficient in pre-mRNA splicing. Methods Enzymol. 181, 20–30 (1990).

    Article  CAS  Google Scholar 

  31. Redmond, T., Tardif, M. & Zigmond, S. H. Induction of actin polymerization in permeabilized neutrophils. Role of ATP. J. Biol. Chem. 269, 21657–21663 (1994).

    CAS  PubMed  Google Scholar 

  32. Mingle, L. A. et al. Localization of all seven messenger RNAs for the actin-polymerization nucleator Arp2/3 complex in the protrusions of fibroblasts. J. Cell Sci. 118, 2425–2433 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr K. Cerione at Cornell University for sharing reagents and equipment and for discussions. We thank our colleagues X. Peng, Z. Melkoumian, H. Wei and B. Gan for critical reading of the manuscript and helpful comments. This research was supported by National Institutes of Health grants to J.-L.G. (GM48050 and HL73394), G.L. and P.W.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Lin Guan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2 and Supplementary Methods (PDF 491 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, X., Yoo, Y., Okuhama, N. et al. Regulation of RNA-polymerase-II-dependent transcription by N-WASP and its nuclear-binding partners. Nat Cell Biol 8, 756–763 (2006). https://doi.org/10.1038/ncb1433

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1433

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing