Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The KLHL12–Cullin-3 ubiquitin ligase negatively regulates the Wnt–β-catenin pathway by targeting Dishevelled for degradation

Abstract

Dishevelled is a conserved protein that interprets signals received by Frizzled receptors. Using a tandem-affinity purification strategy and mass spectrometry we have identified proteins associated with Dishevelled, including a Cullin-3 ubiquitin ligase complex containing the Broad Complex, Tramtrack and Bric à Brac (BTB) protein Kelch-like 12 (KLHL12). This E3 ubiquitin ligase complex is recruited to Dishevelled in a Wnt-dependent manner that promotes its poly-ubiquitination and degradation. Functional analyses demonstrate that regulation of Dishevelled by this ubiquitin ligase antagonizes the Wnt–ß-catenin pathway in cultured cells, as well as in Xenopus and zebrafish embryos. Considered with evidence that the distinct Cullin-1 based SCFβ-TrCPcomplex regulates β-catenin stability, our data on the stability of Dishevelled demonstrates that two distinct ubiquitin ligase complexes regulate the Wnt–ß-catenin pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of the KLHL12–Cullin3 E3 ligase as a Dishevelled interacting complex.
Figure 2: Interaction of KLHL12 with Cullin-3 and Dsh.
Figure 3: KLHL12 is a negative regulator of Wnt and Dsh signalling.
Figure 4: KLHL12 recruits Dsh to Cullin-3 for protein degradation.
Figure 5: Ternary complex requirement for the ubiquitination of Dsh.
Figure 6: Analysis of KLHL12 function in zebrafish embryos.
Figure 7: Analysis of KLHL12 function in Xenopus embryos.

Similar content being viewed by others

References

  1. Latres, E., Chiaur, D. S. & Pagano, M. The human F box protein β-Trcp associates with the Cul1–Skp1 complex and regulates the stability of β-catenin. Oncogene 18, 849–854 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Hart, M. et al. The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell. Curr. Biol. 9, 207–210 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Wodarz, A. & Nusse, R. Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol. 14, 59–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Wharton, K. A., Jr. Runnin' with the Dvl: proteins that associate with Dsh–Dvl and their significance to Wnt signal transduction. Dev. Biol. 253, 1–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Wallingford, J. B. et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405, 81–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Mazieres, J., He, B., You, L., Xu, Z. & Jablons, D. M. Wnt signaling in lung cancer. Cancer Lett. 222, 1–10 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Simons, M. et al. Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nature Genet. 37, 537–543 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Miyazaki, K. et al. NEDL1, a novel ubiquitin-protein isopeptide ligase for dishevelled-1, targets mutant superoxide dismutase-1. J. Biol. Chem. 279, 11327–11335 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Willert, K., Brink, M., Wodarz, A., Varmus, H. & Nusse, R. Casein kinase 2 associates with and phosphorylates dishevelled. EMBO J. 16, 3089–3096 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cong, F., Schweizer, L. & Varmus, H. Casein kinase Iε modulates the signaling specificities of dishevelled. Mol. Cell Biol. 24, 2000–2011 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun, T. Q. et al. PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signalling. Nature Cell Biol. 3, 628–636 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Yan, D. et al. Cell autonomous regulation of multiple Dishevelled-dependent pathways by mammalian Nkd. Proc. Natl Acad. Sci. USA 98, 3802–3807 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ratcliffe, M. J., Itoh, K. & Sokol, S. Y. A positive role for the PP2A catalytic subunit in Wnt signal transduction. J. Biol. Chem. 275, 35680–35683 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Park, M. & Moon, R. T. The planar cell-polarity gene stbm regulates cell behaviour and cell fate in vertebrate embryos. Nature Cell Biol. 4, 20–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, D. D. et al. Ubiquitination of Keap1, a BTB–Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway. J. Biol. Chem. 280, 30091–30099 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Bomont, P. et al. The gene encoding gigaxonin, a new member of the cytoskeletal BTB–kelch repeat family, is mutated in giant axonal neuropathy. Nature Genet. 26, 370–374 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin–RING ubiquitin ligases. Nature Rev. Mol. Cell Biol. 6, 9–20 (2005).

    Article  CAS  Google Scholar 

  19. van den Heuvel, S. Protein degradation: CUL-3 and BTB — partners in proteolysis. Curr. Biol. 14, R59–R61 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Furukawa, M., He, Y. J., Borchers, C. & Xiong, Y. Targeting of protein ubiquitination by BTB–Cullin 3–Roc1 ubiquitin ligases. Nature Cell Biol. 5, 1001–1007 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Kelly, G. M., Greenstein, P., Erezyilmaz, D. F. & Moon, R. T. Zebrafish wnt8 and wnt8b share a common activity but are involved in distinct developmental pathways. Development 121, 1787–1799 (1995).

    CAS  PubMed  Google Scholar 

  22. Dorsky, R. I., Sheldahl, L. C. & Moon, R. T. A transgenic Lef1–β-catenin-dependent reporter is expressed in spatially restricted domains throughout zebrafish development. Dev. Biol. 241, 229–237 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Sokol, S. Y. Analysis of Dishevelled signalling pathways during Xenopus development. Curr. Biol. 6, 1456–1467 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Sheldahl, L. C. et al. Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J. Cell Biol. 161, 769–777 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Torres, M. A. et al. Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J. Cell Biol. 133, 1123–1137 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Rothbacher, U. et al. Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis. EMBO J. 19, 1010–1022 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Katanaev, V. L., Ponzielli, R., Semeriva, M. & Tomlinson, A. Trimeric G protein-dependent frizzled signaling in Drosophila. Cell 120, 111–122 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, X., Rubin, J. S. & Kimmel, A. R. Rapid, Wnt-induced changes in GSK3β associations that regulate β-catenin stabilization are mediated by Gα proteins. Curr. Biol. 15, 1989–1997 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Cardozo, T. & Pagano, M. The SCF ubiquitin ligase: insights into a molecular machine. Nature Rev. Mol. Cell Biol. 5, 739–751 (2004).

    Article  CAS  Google Scholar 

  30. Willems, A. R., Schwab, M. & Tyers, M. A hitchhiker's guide to the cullin ubiquitin ligases: SCF and its kin. Biochim. Biophys. Acta 1695, 133–170 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Geyer, R., Wee, S., Anderson, S., Yates, J. & Wolf, D. A. BTB–POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol. Cell 12, 783–790 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Krek, W. BTB proteins as henchmen of Cul3-based ubiquitin ligases. Nature Cell Biol. 5, 950–951 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Pintard, L. et al. The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature 425, 311–316 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Xu, L. et al. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425, 316–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Cullinan, S. B., Gordan, J. D., Jin, J., Harper, J. W. & Diehl, J. A. The Keap1–BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol. Cell Biol. 24, 8477–8486 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Furukawa, M. & Xiong, Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3–Roc1 ligase. Mol. Cell Biol. 25, 162–171 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kobayashi, A. et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell Biol. 24, 7130–7139 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, D. D., Lo, S. C., Cross, J. V., Templeton, D. J. & Hannink, M. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell Biol. 24, 10941–10953 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hernandez-Munoz, I. et al. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3–SPOP ubiquitin E3 ligase. Proc. Natl Acad. Sci. USA 102, 7635–7640 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamamoto, H. et al. Phosphorylation of axin, a Wnt signal negative regulator, by glycogen synthase kinase-3β regulates its stability. J. Biol. Chem. 274, 10681–10684 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Choi, J., Park, S. Y., Costantini, F., Jho, E. H. & Joo, C. K. Adenomatous polyposis coli is down-regulated by the ubiquitin-proteasome pathway in a process facilitated by Axin. J. Biol. Chem. 279, 49188–49198 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Creyghton, M. P. et al. PR72, a novel regulator of Wnt signaling required for Naked cuticle function. Genes Dev. 19, 376–386 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Uematsu, K. et al. Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene 22, 7218–7221 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Kaykas, A. et al. Mutant Frizzled 4 associated with vitreoretinopathy traps wild-type Frizzled in the endoplasmic reticulum by oligomerization. Nature Cell Biol. 6, 52–58 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Gingras, A. C. et al. A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity. Mol. Cell Proteomics 4, 1725–1740 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Gatlin, C. L., Kleemann, G. R., Hays, L. G., Link, A. J. & Yates, J. R., 3rd. Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography-microspray and nanospray mass spectrometry. Anal. Biochem. 263, 93–101 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. MacCoss, M. J., Wu, C. C. & Yates, J. R., 3rd. Probability-based validation of protein identifications using a modified SEQUEST algorithm. Anal. Chem. 74, 5593–5599 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Tabb, D. L., McDonald, W. H. & Yates, J. R., 3rd. DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J. Proteome Res. 1, 21–26 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A.-C. Gingras for insightful technical discussions. S.A. is an associate and R.T.M. an investigator of the Howard Hughes Medical Institute. M.M. was supported by National Institutes of Health-National Center for Research Resources (NIH-NCRR) grant (P41 RR011823).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall T. Moon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, Table 1 and Table 2 (PDF 374 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angers, S., Thorpe, C., Biechele, T. et al. The KLHL12–Cullin-3 ubiquitin ligase negatively regulates the Wnt–β-catenin pathway by targeting Dishevelled for degradation. Nat Cell Biol 8, 348–357 (2006). https://doi.org/10.1038/ncb1381

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1381

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing