The NuRD component Mbd3 is required for pluripotency of embryonic stem cells


Cells of early mammalian embryos have the potential to develop into any adult cell type, and are thus said to be pluripotent. Pluripotency is lost during embryogenesis as cells commit to specific developmental pathways. Although restriction of developmental potential is often associated with repression of inappropriate genetic programmes1, the role of epigenetic silencing during early lineage commitment remains undefined. Here, we used mouse embryonic stem cells to study the function of epigenetic silencing in pluripotent cells. Embryonic stem cells lacking Mbd3 — a component of the nucleosome remodelling and histone deacetylation (NuRD) complex2,3 — were viable but failed to completely silence genes that are expressed before implantation of the embryo. Mbd3-deficient embryonic stem cells could be maintained in the absence of leukaemia inhibitory factor (LIF) and could initiate differentiation in embryoid bodies or chimeric embryos, but failed to commit to developmental lineages. Our findings define a role for epigenetic silencing in the cell-fate commitment of pluripotent cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Characterization of Mbd3−/− embryonic stem cells.
Figure 2: Differentiation defects in Mbd3−/− embryonic stem cells.
Figure 3: LIF-independent maintenance of Mbd3−/− embryonic stem cells.
Figure 4: Failure of Mbd3−/− embryonic stem cells to differentiate in chimeric embryos.


  1. 1

    Busslinger, M., Nutt, S. L. & Rolink, A. G. Lineage commitment in lymphopoiesis. Curr. Opin. Immunol. sx 151–158 (2000).

    Article  Google Scholar 

  2. 2

    Wade, P. A. et al. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nature Genet. 23, 62–66 (1999).

    CAS  Article  Google Scholar 

  3. 3

    Zhang, Y. et al. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13, 1924–1935 (1999).

    CAS  Article  Google Scholar 

  4. 4

    Hendrich, B. et al. Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev. 15, 710–723. (2001).

    CAS  Article  Google Scholar 

  5. 5

    Takahashi, K., Mitsui, K. & Yamanaka, S. Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature 423, 541–545 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Hendrich, B. & Bird, A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 18, 6538–6547 (1998).

    CAS  Article  Google Scholar 

  7. 7

    Bortvin, A. et al. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development 130, 1673–1680 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Saitou, M., Barton, S. C. & Surani, M. A. A molecular programme for the specification of germ cell fate in mice. Nature 418, 293–300 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Sato, M. et al. Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells. Mech. Dev. 113, 91–94 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Huang, J., Durum, S. K. & Muegge, K. Cutting edge: histone acetylation and recombination at the TCRγ locus follows IL-7 induction. J. Immunol. 167, 6073–6077 (2001).

    CAS  Article  Google Scholar 

  11. 11

    Martin, G. R. & Evans, M. J. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc. Natl Acad. Sci. USA 72, 1441–1445 (1975).

    CAS  Article  Google Scholar 

  12. 12

    Doetschman, T. C. et al. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45 (1985).

    CAS  PubMed  Google Scholar 

  13. 13

    Beddington, R. S. & Robertson, E. J. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105, 733–737 (1989).

    CAS  PubMed  Google Scholar 

  14. 14

    Tanaka, S. et al. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075 (1998).

    CAS  Article  Google Scholar 

  15. 15

    Hendrich, B. & Tweedie, S. The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet. 19, 269–277 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Saito, M. & Ishikawa, F. The mCpG-binding domain of human MBD3 does not bind to mCpG but interacts with NuRD–Mi2 components HDAC1 and MTA2. J. Biol. Chem. 277, 35434–35439 (2002).

    CAS  Article  Google Scholar 

  17. 17

    Li, L. et al. Distinct GATA6- and laminin-dependent mechanisms regulate endodermal and ectodermal embryonic stem cell fates. Development 131, 5277–5286 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Ying, Q. L. et al. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nature Biotechnol. 21, 183–186 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Ying, Q. L., Nichols, J., Evans, E. P. & Smith, A. G. Changing potency by spontaneous fusion. Nature 416, 545–548 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Niwa, H., Burdon, T., Chambers, I. & Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12, 2048–2060 (1998).

    CAS  Article  Google Scholar 

  21. 21

    Duval, D., Reinhardt, B., Kedinger, C. & Boeuf, H. Role of suppressors of cytokine signaling (Socs) in leukemia inhibitory factor (LIF) -dependent embryonic stem cell survival. FASEB J. 14, 1577–1584 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Tam, P. P. & Rossant, J. Mouse embryonic chimeras: tools for studying mammalian development. Development 130, 6155–6163 (2003).

    CAS  Article  Google Scholar 

  23. 23

    Epping, M. T. et al. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell 122, 835–847 (2005).

    CAS  Article  Google Scholar 

  24. 24

    Chambers, I. et al. Functional expression cloning of nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    CAS  Article  Google Scholar 

  25. 25

    Smith, A. G. Culture and differentiation of embryonic stem cells. J. Tiss. Cult. Meth. 13, 89–94 (1991).

    Article  Google Scholar 

  26. 26

    Niwa, H. et al. Phenotypic complementation establishes requirements for specific POU domain and generic transactivation function of Oct-3/4 in embryonic stem cells. Mol. Cell. Biol. 22, 1526–1536 (2002).

    CAS  Article  Google Scholar 

  27. 27

    Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40 (2000).

    CAS  Article  Google Scholar 

  28. 28

    Iscove, N. N. et al. Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nature Biotechnol. 20, 940–943 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Morrisey, E. E., Ip, H. S., Lu, M. M. & Parmacek, M. S. GATA-6: A zinc finger transcription factor that is expressed in multiple cell lineages derived from lateral mesoderm. Dev. Biol. 177, 309–322 (1996).

    CAS  Article  Google Scholar 

  30. 30

    Hebert, J., Boyle, M. & Martin, G. mRNA localization studies suggest that murine FGF-5 plays a role in gastrulation. Development 112, 407–415 (1991).

    CAS  PubMed  Google Scholar 

  31. 31

    Wilkinson, D. G., Bhatt, S. & Herrmann, B. G. Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343, 657–659 (1990).

    CAS  Article  Google Scholar 

  32. 32

    Gibson–Brown, J. J., I–Agulnik, S, Silver, L. M. & Papaioannou, V. E. Expression of T-box genes Tbx2-Tbx5 during chick organogenesis. Mech. Dev. 74, 165–169 (1998).

    Article  Google Scholar 

  33. 33

    Kaipainen, A. et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl Acad. Sci. USA 92, 3566–3570 (1995).

    CAS  Article  Google Scholar 

  34. 34

    Jackson, M. et al. Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol. Cell. Biol. 24, 8862–8871 (2004).

    CAS  Article  Google Scholar 

Download references


We are grateful to M. Osawa and S. Nishikawa for instruction on the single-cell cDNA amplification technique. We also thank J. Back and R. Wilkie for technical assistance; R. McLay, G. Russell and J. Agnew for chimaera production; and A. Smith, I. Chambers, T. Kunath, J. Kawaguchi and N. Reynolds for advice, discussions and comments on the manuscript. K.K. was the recipient of a postdoctoral fellowship from the Japanese Society for the Promotion of Science, and I.M.C. was the recipient of a University of Edinburgh School of Biological Sciences PhD studentship. This work was funded by the Wellcome Trust, the UK Medical Research Council, and Biotechnology and Biological Sciences Research Council (BBSRC) UK–Japan Partnering Award.

Author information



Corresponding author

Correspondence to Brian Hendrich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2 and S3 plus Supplementary table S1 (PDF 399 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaji, K., Caballero, I., MacLeod, R. et al. The NuRD component Mbd3 is required for pluripotency of embryonic stem cells. Nat Cell Biol 8, 285–292 (2006).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing