Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains

Abstract

During inflammation, leukocytes bind to the adhesion receptors ICAM-1 and VCAM-1 on the endothelial surface before undergoing transendothelial migration, also called diapedesis. ICAM-1 is also involved in transendothelial migration, independently of its role in adhesion, but the molecular basis of this function is poorly understood. Here we demonstrate that, following clustering, apical ICAM-1 translocated to caveolin-rich membrane domains close to the ends of actin stress fibres. In these F-actin-rich areas, ICAM-1 was internalized and transcytosed to the basal plasma membrane through caveolae. Human T-lymphocytes extended pseudopodia into endothelial cells in caveolin- and F-actin-enriched areas, induced local translocation of ICAM-1 and caveolin-1 to the endothelial basal membrane and transmigrated through transcellular passages formed by a ring of F-actin and caveolae. Reduction of caveolin-1 levels using RNA interference (RNAi) specifically decreased lymphocyte transcellular transmigration. We propose that the translocation of ICAM-1 to caveola- and F-actin-rich domains links the sequential steps of lymphocyte adhesion and transendothelial migration and facilitates lymphocyte migration through endothelial cells from capillaries into surrounding tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antibody-crosslinked ICAM-1 translocates to F-actin- and caveolin-rich areas at the endothelial cell periphery.
Figure 2: ICAM-1 crosslinking leads to transcytosis of ICAM-1 and caveolin-1.
Figure 3: ICAM-1 localizes to caveolae and is translocated to the basal plasma membrane.
Figure 4: ICAM-1 and caveolin-1 are translocated to the basal membrane at endothelium–lymphocyte interaction sites.
Figure 5: Caveolin-1 and F-actin accumulate at transcellular passages of diapedesis.
Figure 6: Transcellular transendothelial migration in human microvascular endothelial cells.
Figure 7: Knockdown of caveolin-1 with siRNA decreases T-lymphoblast transcellular transendothelial migration.

Similar content being viewed by others

References

  1. Butcher, E. C. Leukocyte–endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 67, 1033–1036 (1991).

    Article  CAS  Google Scholar 

  2. Johnson-Leger, C., Aurrand-Lions, M. & Imhof, B. A. The parting of the endothelium: miracle, or simply a junctional affair? J. Cell Sci. 113, 921–933 (2000).

    CAS  PubMed  Google Scholar 

  3. Burns, A. R. et al. Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners. J. Immunol. 159, 2893–2903 (1997).

    CAS  PubMed  Google Scholar 

  4. Burns, A. R. et al. Analysis of tight junctions during neutrophil transendothelial migration. J. Cell Sci. 113, 45–57 (2000).

    CAS  PubMed  Google Scholar 

  5. Oppenheimer-Marks, N. et al. Differential utilization of ICAM-1 and VCAM-1 during the adhesion and transendothelial migration of human T lymphocytes. J. Immunol. 147, 2913–2921 (1991).

    CAS  PubMed  Google Scholar 

  6. Schenkel, A. R., Mamdouh, Z. & Muller, W. A. Locomotion of monocytes on endothelium is a critical step during extravasation. Nature Immunol. 5, 393–400 (2004).

    Article  CAS  Google Scholar 

  7. Muller, W. A. Leukocyte–endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 24, 327–334 (2003).

    CAS  PubMed  Google Scholar 

  8. Feng, D. et al. Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J. Exp. Med. 187, 903–915 (1998).

    Article  CAS  Google Scholar 

  9. Carman, C. V. & Springer, T. A. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J. Cell Biol. 167, 377–388 (2004).

    Article  CAS  Google Scholar 

  10. Dvorak, A. M. & Feng, D. The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J. Histochem. Cytochem. 49, 419–432 (2001).

    Article  CAS  Google Scholar 

  11. Mundy, D. I. et al. Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J. Cell Sci. 115, 4327–4339 (2002).

    Article  CAS  Google Scholar 

  12. Gratton, J. P., Bernatchez, P. & Sessa, W. C. Caveolae and caveolins in the cardiovascular system. Circ. Res. 94, 1408–1417 (2004).

    Article  CAS  Google Scholar 

  13. Carman, C. V., Jun, C. D., Salas, A. & Springer, T. A. Endothelial cells proactively form microvilli-like membrane projections upon intercellular adhesion molecule 1 engagement of leukocyte LFA-1. J. Immunol. 171, 6135–6144 (2003).

    Article  CAS  Google Scholar 

  14. Barreiro, O. et al. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J. Cell Biol. 157, 1233–1245 (2002).

    Article  CAS  Google Scholar 

  15. Thompson, P. W., Randi, A. M. & Ridley, A. J. Intercellular adhesion molecule (ICAM)-1, but not ICAM-2, activates RhoA and stimulates c-fos and rhoA transcription in endothelial cells. J. Immunol. 169, 1007–1013 (2002).

    Article  CAS  Google Scholar 

  16. Etienne-Manneville, S. et al. ICAM-1-coupled cytoskeletal rearrangements and transendothelial lymphocyte migration involve intracellular calcium signaling in brain endothelial cell lines. J. Immunol. 165, 3375–3383 (2000).

    Article  CAS  Google Scholar 

  17. Kiemer, A. K. et al. Inhibition of p38 MAPK activation via induction of MKP-1: atrial natriuretic peptide reduces TNF-α-induced actin polymerization and endothelial permeability. Circ. Res. 90, 874–881 (2002).

    Article  CAS  Google Scholar 

  18. Feng, D., Nagy, J. A., Dvorak, H. F. & Dvorak, A. M. Ultrastructural studies define soluble macromolecular, particulate, and cellular transendothelial cell pathways in venules, lymphatic vessels, and tumor-associated microvessels in man and animals. Microsc. Res. Tech. 57, 289–326 (2002).

    Article  CAS  Google Scholar 

  19. Toomre, D. & Manstein, D. J. Lighting up the cell surface with evanescent wave microscopy. Trends Cell Biol. 11, 298–303 (2001).

    Article  CAS  Google Scholar 

  20. Steyer, J. A. & Almers, W. A real-time view of life within 100 nm of the plasma membrane. Nature Rev. Mol. Cell Biol. 2, 268–275 (2001).

    Article  CAS  Google Scholar 

  21. Vasile, E., Simionescu, M. & Simionescu, N. Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ. J. Cell Biol. 96, 1677–1689 (1983).

    Article  CAS  Google Scholar 

  22. Pelkmans, L., Puntener, D. & Helenius, A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296, 535–539 (2002).

    Article  CAS  Google Scholar 

  23. Kvietys, P. R. & Sandig, M. Neutrophil diapedesis: paracellular or transcellular? News Physiol. Sci. 16, 15–19 (2001).

    CAS  PubMed  Google Scholar 

  24. Engelhardt, B. & Wolburg, H. Transendothelial migration of leukocytes: through the front door or around the side of the house? Eur. J. Immunol. 34, 2955–2963 (2004).

    Article  CAS  Google Scholar 

  25. Makinen, T. et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 20, 4762–4773 (2001).

    Article  CAS  Google Scholar 

  26. Sotgia, F. et al. Intracellular retention of glycosylphosphatidyl inositol-linked proteins in caveolin-deficient cells. Mol. Cell Biol. 22, 3905–3926 (2002).

    Article  CAS  Google Scholar 

  27. Yang, L. et al. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-I activated vascular endothelium under flow. Blood 106, 584–592 (2005).

    Article  CAS  Google Scholar 

  28. Wojciak-Stothard, B., Williams, L. & Ridley, A. J. Monocyte adhesion and spreading on human endothelial cells is dependent on Rho-regulated receptor clustering. J. Cell Biol. 145, 1293–1307 (1999).

    Article  CAS  Google Scholar 

  29. Heiska, L. et al. Association of ezrin with intercellular adhesion molecule-1 and -2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4, 5-bisphosphate. J. Biol. Chem. 273, 21893–21900 (1998).

    Article  CAS  Google Scholar 

  30. Stahlhut, M. & van Deurs, B. Identification of filamin as a novel ligand for caveolin-1: evidence for the organization of caveolin-1-associated membrane domains by the actin cytoskeleton. Mol. Biol. Cell 11, 325–337 (2000).

    Article  CAS  Google Scholar 

  31. Parton, R. G. Caveolae — from ultrastructure to molecular mechanisms. Nature Rev. Mol. Cell Biol. 4, 162–167 (2003).

    Article  CAS  Google Scholar 

  32. Simionescu, M., Gafencu, A. & Antohe, F. Transcytosis of plasma macromolecules in endothelial cells: a cell biological survey. Microsc. Res. Tech. 57, 269–288 (2002).

    Article  CAS  Google Scholar 

  33. Pelkmans, L. et al. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436, 78–86 (2005).

    Article  CAS  Google Scholar 

  34. Fielding, C. J. Caveolae and signaling. Curr. Opin. Lipidol. 12, 281–287 (2001).

    Article  CAS  Google Scholar 

  35. Wary, K. K., Mariotti, A., Zurzolo, C. & Giancotti, F. G. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell 94, 625–634 (1998).

    Article  CAS  Google Scholar 

  36. Tilghman, R. W. & Hoover, R. L. The Src-cortactin pathway is required for clustering of E-selectin and ICAM-1 in endothelial cells. FASEB J. 16, 1257–1259 (2002).

    Article  CAS  Google Scholar 

  37. Michaely, P. A., Mineo, C., Ying, Y. S. & Anderson, R. G. Polarized distribution of endogenous Rac1 and RhoA at the cell surface. J. Biol. Chem. 274, 21430–21436 (1999).

    Article  CAS  Google Scholar 

  38. Etienne, S. et al. ICAM-1 signaling pathways associated with Rho activation in microvascular brain endothelial cells. J. Immunol. 161, 5755–5761 (1998).

    CAS  PubMed  Google Scholar 

  39. Millan, J. et al. Lipid rafts mediate biosynthetic transport to the T lymphocyte uropod subdomain and are necessary for uropod integrity and function. Blood 99, 978–984 (2002).

    Article  CAS  Google Scholar 

  40. Toomre, D. et al. Fusion of constitutive membrane traffic with the cell surface observed by evanescent wave microscopy. J. Cell Biol. 149, 33–40 (2000).

    Article  CAS  Google Scholar 

  41. Simionescu, N. & Simionescu, M. Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J. Cell Biol. 70, 608–621 (1976).

    Article  CAS  Google Scholar 

  42. Beardsley, A. et al. Loss of caveolin-1 polarity impedes endothelial cell polarization and directional movement. J. Biol. Chem. 280, 3541–3547 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ludwig Institute for Cancer Research and European Community contracts QLG1-CT-99-01036 and FP6–502935. J. Millán was supported by a Marie Curie fellowship (no. HPMF-CT-2000-01061) and British Heart Foundation intermediate fellowship (no. FS/04/006). We are grateful to the named donors for the gifts of plasmids and antibodies listed in the methods section, to E. Cernuda Morollon for providing T-lymphoblasts, and to members of the Ridley laboratory for helpful discussions. We thank Olympus for generously providing instrumentation and support to the Yale CINEMA lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne J. Ridley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4 and Methods (PDF 855 kb)

Supplementary Information

Supplementary Movie 1 (MOV 3002 kb)

Supplementary Information

Supplementary Movie 2 (MOV 1306 kb)

Supplementary Information

Supplementary Movie 3 (MOV 2638 kb)

Supplementary Information

Supplementary Movie 4 (MOV 3080 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Millán, J., Hewlett, L., Glyn, M. et al. Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Nat Cell Biol 8, 113–123 (2006). https://doi.org/10.1038/ncb1356

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1356

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing