Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization

Abstract

The double fertilization process in angiosperms is based on the delivery of a pair of sperm cells by the pollen tube (the male gametophyte), which elongates towards an embryo sac (the female gametophyte) enclosing an egg and a central cell. Several studies have described the mechanisms of gametophyte interaction1, and also the fertilization process — from pollination to pollen tube acceptance2,3,4,5. However, the mechanisms of gamete interaction are not fully understood6,7. Cytological studies have shown that male gametes possess distinct cell-surface structures8,9 and genes specific to male gametes have been detected in cDNA libraries10,11,12,13,14. Thus, studies of isolated gametes may offer clues to understanding the sperm–egg interaction. In this study, we identified a novel protein, designated GCS1 (GENERATIVE CELL SPECIFIC 1), using generative cells isolated from Lilium longiflorum pollen. GCS1 possesses a carboxy-terminal transmembrane domain, and homologues are present in various species, including non-angiosperms. Immunological assays indicate that GCS1 is accumulated during late gametogenesis and is localized on the plasma membrane of generative cells. In addition, Arabidopsis thaliana GCS1 mutant gametes fail to fuse, resulting in male sterility and suggesting that GCS1 is a critical fertilization factor in angiosperms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolation of the GCS1 gene and characterization of its product.
Figure 2: Analyses of GCS1 expression in generative cells.
Figure 3: Characterization of Arabidopsis GCS1 mutant (+/gcs1).
Figure 4: Assessment of gamete interaction in +/gcs1 plants.
Figure 5: Characterization of GCS1 in unicellular organisms and proposed GCS1 function.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Weterings, K. & Russell, S. D. Experimental analysis of the fertilization process. Plant Cell 16, S107–S118 (2004).

    Article  CAS  Google Scholar 

  2. Higashiyama, T. et al. Pollen tube attraction by the synergid cell. Science 293, 1480–1483 (2001).

    Article  CAS  Google Scholar 

  3. Kim, S. et al. Chemocyanin, a small basic protein from the lily stigma, induces pollen tube chemotropism. Proc. Natl Acad. Sci. USA 100, 16125–16130 (2003).

    Article  CAS  Google Scholar 

  4. Palanivelu, R., Brass, L., Edlund, A. F. & Preuss, D. Pollen tube growth and guidance is regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell 114, 47–59 (2003).

    Article  CAS  Google Scholar 

  5. Marton, M. L., Cordts, S., Broadhvest, J. & Dresselhaus, T. Micropylar pollen tube guidance by egg apparatus 1 of maize. Science 307, 573–576 (2005).

    Article  CAS  Google Scholar 

  6. Faure, J.-E., Digonnet, C. & Dumas, C. An in vitro system for adhesion and fusion of maize gametes. Science 263, 1598–1600 (1994).

    Article  CAS  Google Scholar 

  7. Faure, J.-E. et al. Double fertilization in maize: The two male gametes from a pollen grain have the ability to fuse with egg cells. Plant J. 33, 1051–1062 (2003).

    Article  Google Scholar 

  8. Blomstedt, C. K., Xu, H., Singh, M. B. & Knox, R. B. The isolation and purification of surface specific proteins of somatic and reproductive protoplasts of lily and rapeseed. Physiol. Plant. 85, 396–402 (1992).

    Article  CAS  Google Scholar 

  9. Southworth, D. & Kwiatkowski, S. Arabinogalactan proteins at the cell surface of Brassica sperm and Lilium sperm and generative cells. Sex. Plant Reprod. 9, 269–272 (1996).

    Article  CAS  Google Scholar 

  10. Xu, H., Swoboda, I., Bhalla, P. L. & Singh, M. B. Male gametic cell-specific expression of H2A and H3 histone genes. Plant Mol. Biol. 39, 607–614. (1999).

    Article  CAS  Google Scholar 

  11. Xu, H., Swoboba, I., Bhalla, P. L. & Singh, M. B. Male gametic cell-specific gene expression in flowering plants. Proc. Natl Acad. Sci. USA 96, 2554–2558 (1999).

    Article  CAS  Google Scholar 

  12. Ueda, K. et al. Unusual core histones specifically expressed in male gametic cells of Lilium longiflorum. Chromosoma 108, 491–500 (2000).

    Article  CAS  Google Scholar 

  13. Xu, H. et al. Isolation and characterization of male-germ-cell transcripts in Nicotiana tabacum. Sex. Plant Reprod. 14, 339–346 (2002).

    Article  Google Scholar 

  14. Engel, M. L., Chaboud, A., Dumas, C. & McCormick, S. Sperm cells of Zea mays have a complex complement of mRNAs. Plant J. 34, 697–707 (2003).

    Article  CAS  Google Scholar 

  15. Tanaka, I. Differentiation of generative and vegetative cells in angiosperm pollen. Sex. Plant Reprod. 10, 1–7 (1997).

    Article  Google Scholar 

  16. May, S. T., Clements, D. & Bennett, M. J. Finding your knockout: reverse genetics techniques for plants. Mol. Biotechnol. 20, 209–221 (2002).

    Article  CAS  Google Scholar 

  17. Rotman, N. et al. Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr. Biol. 13, 432–436 (2003).

    Article  CAS  Google Scholar 

  18. Huck, N., Moore, J. M., Federer, M. & Grossniklaus, U. The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development 130, 2149–2159 (2003).

    Article  CAS  Google Scholar 

  19. Rotman, N. et al. A novel class of MYB factors controls sperm-cell formation in plants. Curr. Biol. 15, 244–248 (2005).

    Article  CAS  Google Scholar 

  20. Cho, C. et al. Fertilization defects in sperm from mice lacking fertilin beta. Science 281, 1857–1859 (1998).

    Article  CAS  Google Scholar 

  21. Inoue, N., Ikawa, M., Isotani, A., & Okabe, M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434, 234–238 (2005).

    Article  CAS  Google Scholar 

  22. Estelle, M. A. & Somerville, C. Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology. Mol. Gen. Genet. 206, 200–206 (1987).

    Article  CAS  Google Scholar 

  23. Moriyama, Y. & Kawano, S. Rapid, selective digestion of mitochondrial DNA in accordance with the matA hierarchy of multiallelic mating types in the mitochondrial inheritance of Physarum polycephalum. Genetics 164, 963–975 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Misumi, O. et al. Isolation and phenotypic characterization of Chlamydomonas reinhardtii mutant defective in chloroplast DNA segregation. Protoplasma 209, 273–282 (1999).

    Article  CAS  Google Scholar 

  25. Nishimura, Y. et al. An mt+ gamete-specific nuclease that targets mt chloroplasts during sexual reproduction in C. reinhardtii. Genes Dev. 16, 1116–1128 (2002).

    Article  CAS  Google Scholar 

  26. Tanaka, I. Isolation of generative cells and their protoplasts from pollen of Lilium longiflorum. Protoplasma 142, 68–73 (1988).

    Article  Google Scholar 

  27. Mori, T. & Tanaka, I. Isolation of the ftsZ gene from the plastid deficient generative cells in Lilium longiflorum. Protoplasma 214, 57–64 (2000).

    Article  CAS  Google Scholar 

  28. Mori, T., Kuroiwa, H., Higashiyama, T. & Kuroiwa, T. Identification of higher plant GlsA, a putative morphogenesis factor of gametic cells. Biochem. Biophys. Res. Commun. 306, 564–569 (2003).

    Article  CAS  Google Scholar 

  29. Yadegari, R. et al. Cell differentiation and morphogenesis are uncoupled in Arabidopsis raspberry embryos. Plant Cell 6, 1713–1729 (1994).

    Article  CAS  Google Scholar 

  30. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  31. Bent, A. F. Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol. 124, 1540–1547 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank NASC for supplying the Arabidopsis T-DNA insertion mutant, F. Berger for supplying the transgenic Arabidopsis expressing DUO1–mRFP1, O. Misumi for providing C. reinhardtii, and Y. Moriyama and S. Kawano for providing P. polycephalum. This research was supported by a research fellowship from the Japanese Society for the Promotion of Science for Young Scientists (07962 and 08548) to T.M., by MEXT KAKENHI (16GS0304) to K.T. and by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (12446222 and 12874111), and from the Program for the Promotion of Basic Research Activities for Innovative Bioscience (ProBRAIN) to T.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Mori.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, T., Kuroiwa, H., Higashiyama, T. et al. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization. Nat Cell Biol 8, 64–71 (2006). https://doi.org/10.1038/ncb1345

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1345

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing