Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dishevelled mediates ephrinB1 signalling in the eye field through the planar cell polarity pathway

An Erratum to this article was published on 01 February 2006

Abstract

An important step in retinal development is the positioning of progenitors within the eye field where they receive the local environmental signals that will direct their ultimate fate1. Recent evidence indicates that ephrinB1 functions in retinal progenitor movement, but the signalling pathway is unclear. We present evidence that ephrinB1 signals through its intracellular domain to control retinal progenitor movement into the eye field by interacting with Xenopus Dishevelled (Xdsh), and by using the planar cell polarity (PCP) pathway. Blocking Xdsh translation prevents retinal progeny from entering the eye field, similarly to the morpholino-mediated loss of ephrinB1 (ref. 2). Overexpression of Xdsh can rescue the phenotype induced by loss of ephrinB1, and this rescue (as well as a physical association between Xdsh and ephrinB1) is completely dependent on the DEP (Dishevelled, Egl-10, Pleckstrin) domain of Xdsh. Similar gain- and loss-of-function experiments suggest that Xdsh associates with ephrinB1 and mediates ephrinB1 signalling through downstream members of the PCP pathway during eye field formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Xdsh is expressed in the eye field, interacts with ephrinB1 through the DEP (Dishevelled, Egl-10, Pleckstrin) domain, and is essential for eye-field formation.
Figure 2: The DEP domain of Xdsh is necessary for ephrinB1-driven movement of non-retinal progenitor cells into the retina.
Figure 3: PKCδ is an essential downstream mediator for ephrinB1–Xdsh-driven cell movement.
Figure 4: Inhibition of the ephrinB1–Xdsh–PKCδ pathway represses retinal fate and expands ventral neural fate.
Figure 5: Downstream members of the non-canonical Wnt–PCP pathway are critical for ephrinB1–Xdsh–PKCδ-driven population of the retina.

Similar content being viewed by others

References

  1. Saha, M. S. & Grainger, R. M. A labile period in the determination of the anterior-posterior axis during early neural development in Xenopus. Neuron 8, 1003–1014 (1992).

    Article  CAS  Google Scholar 

  2. Moore, K. B., Mood, K., Daar, I. O. & Moody, S. A. Morphogenetic movements underlying eye field formation require interactions between the FGF and ephrinB1 signaling pathways. Dev. Cell 6, 55–67 (2004).

    Article  CAS  Google Scholar 

  3. Kenyon, K. L., Zaghloul, N. & Moody, S. A. Transcription factors of the anterior neural plate alter cell movements of epidermal progenitors to specify a retinal fate. Dev. Biol. 240, 77–91 (2001).

    Article  CAS  Google Scholar 

  4. Maurus, D. et al. Noncanonical Wnt-4 signaling and EAF2 are required for eye development in Xenopus laevis. EMBO J. 24, 1181–1191 (2005).

    Article  CAS  Google Scholar 

  5. Cavodeassi, F. et al. Early Stages of Zebrafish Eye Formation Require the Coordinated Activity of Wnt11, Fz5, and the Wnt/beta-Catenin Pathway. Neuron 47, 43–56 (2005).

    Article  CAS  Google Scholar 

  6. Holland, S. J. et al. Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature 383, 722–725 (1996).

    Article  CAS  Google Scholar 

  7. Davy, A., Aubin, J. & Soriano, P. Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev. 18, 572–583 (2004).

    Article  CAS  Google Scholar 

  8. Cowan, C. A. & Henkemeyer, M. Ephrins in reverse, park and drive. Trends Cell. Biol. 12, 339–346 (2002).

    Article  CAS  Google Scholar 

  9. Palmer, A. & Klein, R. Multiple roles of ephrins in morphogenesis, neuronal networking, and brain function. Genes Dev. 17, 1429–1450 (2003).

    Article  CAS  Google Scholar 

  10. Tanaka, M., Kamo, T., Ota, S. & Sugimura, H. Association of Dishevelled with Eph tyrosine kinase receptor and ephrin mediates cell repulsion. EMBO J. 22, 847–858 (2003).

    Article  CAS  Google Scholar 

  11. Sheldahl, L. C. et al. Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J. Cell Biol. 161, 769–777 (2003).

    Article  CAS  Google Scholar 

  12. Huang, S. & Moody, S. A. The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: studies of normal and regulated clones. J. Neurosci. 13, 3193–3210 (1993).

    Article  CAS  Google Scholar 

  13. Yang-Snyder, J., et al. A frizzled homolog functions in a vertebrate Wnt signaling pathway. Curr. Biol. 6, 1302–1306 (1996).

    Article  CAS  Google Scholar 

  14. Kinoshita, N., Iioka, H., Miyakoshi, A. & Ueno, N. PKCδ is essential for Dishevelled function in a noncanonical Wnt pathway that regulates Xenopus convergent extension movements. Genes Dev. 17, 1663–1676 (2003).

    Article  CAS  Google Scholar 

  15. Moody, S. A. Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Dev. Biol. 122, 300–319 (1987).

    Article  CAS  Google Scholar 

  16. Habas, R., Kato, Y. & He, X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107, 843–854 (2001).

    Article  CAS  Google Scholar 

  17. Umbhauer, M. et al. The C-terminal cytoplasmic Lys-thr-X-X-X-Trp motif in frizzled receptors mediates Wnt/beta-catenin signalling. EMBO J. 19, 4944–4954 (2000).

    Article  CAS  Google Scholar 

  18. Winklbauer, R., Medina, A., Swain, R. K. & Steinbeisser, H. Frizzled-7 signalling controls tissue separation during Xenopus gastrulation. Nature 413, 856–860 (2001).

    Article  CAS  Google Scholar 

  19. De Calisto, J. et al. Essential role of non-canonical Wnt signalling in neural crest migration. Development 132, 2587–2597 (2005).

    Article  CAS  Google Scholar 

  20. Moody, S. A. Cell lineage analysis in Xenopus embryos. In Methods in Molecular Biology: Dev. Biol. Protocols, R. S.Tuan, and C. W.Lo, eds. (Totowa, NJ: Humana Press, Inc), 331–347 (1999).

    Chapter  Google Scholar 

  21. Wallingford, J. B. et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405, 81–85 (2000).

    Article  CAS  Google Scholar 

  22. Chin-Sang, I. D. et al. The ephrin VAB-2/EFN-1 functions in neuronal signaling to regulate epidermal morphogenesis in C. elegans. Cell 99, 781–790 (1999).

    Article  CAS  Google Scholar 

  23. Himanen, J. P. et al. Crystal structure of an Eph receptor-ephrin complex. Nature 414, 933–938 (2001).

    Article  CAS  Google Scholar 

  24. Sive, H. L., Grainger, R. M. & Harland, R. M. Early development of Xenopus laevis: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harber Laboratory Press (2000).

    Google Scholar 

  25. Smith, J. C. et al. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67, 79–87 (1991).

    Article  CAS  Google Scholar 

  26. Itoh, K. & Sokol, S. Y. Graded amounts of Xenopus dishevelled specify discrete anteroposterior cell fates in prospective ectoderm. Mech. Dev. 61, 113–125 (1997).

    Article  CAS  Google Scholar 

  27. Small, E. M. et al. Developmental expression of the Xenopus Nkx2-1 and Nkx2-4 genes. Mech. Dev. 96, 259–262 (2000).

    Article  CAS  Google Scholar 

  28. Heller, N. & Brandli, A. W. Xenopus Pax-2/5/8 orthologues: novel insights into Pax gene evolution and identification of Pax-8 as the earliest marker for otic and pronephric cell lineages. Dev. Genet. 24, 208–219 (1999).

    Article  CAS  Google Scholar 

  29. Hirsch, N. & Harris, W. A. Xenopus Pax-6 and retinal development. J. Neurobiol. 32, 45–61 (1997).

    Article  CAS  Google Scholar 

  30. Mathers, P. H., Grinberg, A., Mahon, K. A. & Jamrich, M. The Rx homeobox gene is essential for vertebrate eye development. Nature 387, 603–607 (1997).

    Article  CAS  Google Scholar 

  31. Zygar, C. A., Cook, T. L. & Grainger, R. M., Jr. Gene activation during early stages of lens induction in Xenopus. Development 125, 3509–3519 (1998).

    CAS  PubMed  Google Scholar 

  32. Smith, W. C., McKendry, R., Ribisi, S., Jr. & Harland, R. M. A nodal-related gene defines a physical and functional domain within the Spemann organizer. Cell 82, 37–46 (1995).

    Article  CAS  Google Scholar 

  33. Chong, L. D. et al. Fibroblast growth factor receptor-mediated rescue of x-ephrin B1-induced cell dissociation in Xenopus embryos. Mol. Cell. Biol. 20, 724–734 (2000).

    Article  CAS  Google Scholar 

  34. Murakami, M. S., Moody, S. A., Daar, I. O. & Morrison, D. K. Morphogenesis during Xenopus gastrulation requires Wee1-mediated inhibition of cell proliferation. Development 131, 571–580 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Moon for Xdsh and Xwnt5a (RPA) constructs; N. Kinoshita for PKCδ1, PKCδ2 constructs; S. Sokol for DN Tcf3 construct; L. Heasley for MKK7–JNK1 fusion construct; T. Yamaguchi for Daam1 MO; J. Gautier for tPARP construct; R. Winklbauer for Xfz7, ΔC Xfz7 constructs; K. Itoh and J. Miller for Xdsh–GFP constructs; P. McCrea for Xwnt11, DN Xwnt11 constructs and D. Morrison for cdc25c and anti-polyoma antibody. We also thank J. Acharya, S. Sharan, and M. Fortini for helpful discussions and critical reading of this manuscript. This research was supported by the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute, and NIH EY10096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira O. Daar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 (PDF 937 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HS., Bong, YS., Moore, K. et al. Dishevelled mediates ephrinB1 signalling in the eye field through the planar cell polarity pathway. Nat Cell Biol 8, 55–63 (2006). https://doi.org/10.1038/ncb1344

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1344

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing