Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast

An Erratum to this article was published on 02 December 2005


In contrast to animal and fungal cells, green plant cells contain one or multiple chloroplasts, the organelle(s) in which photosynthetic reactions take place. Chloroplasts are believed to have originated from an endosymbiotic event and contain DNA that codes for some of their proteins. Most chloroplast proteins are encoded by the nuclear genome and imported with the help of sorting signals that are intrinsic parts of the polypeptides. Here, we show that a chloroplast-located protein in higher plants takes an alternative route through the secretory pathway, and becomes N-glycosylated before entering the chloroplast.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The deduced amino-acid sequence of CAH1 (a).
Figure 2: CAH1 is taken up into the endoplasmic reticulum and glycosylated.
Figure 3: Chloroplast stroma contains an N-glycosylated isoform of CAH1.
Figure 4: Effect of BFA on chloroplast targeted CAH1–GFP fusion construct in Arabidopsis protoplasts (a–e) and native CAH1 in Arabidopsis cell suspensions (f).


  1. Leister, D. Chloroplast research in the genomic age. Trends Genet. 19, 47–56 (2003).

    CAS  Article  Google Scholar 

  2. Abdallah, F., Salamini, F. & Leister, D. A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci. 5, 141–142 (2000).

    CAS  Article  Google Scholar 

  3. Keegstra, K. & Cline, K. Protein import and routing systems of chloroplasts. Plant Cell 11, 557–570 (1999).

    CAS  Article  Google Scholar 

  4. Soll, J. Protein import into chloroplasts. Curr. Opin. Plant Biol. 5, 529–535 (2002).

    CAS  Article  Google Scholar 

  5. Jarvis, P. & Soll, J. Toc, Tic, and chloroplast protein import. Biochim. Biophys. Acta 1541, 64–79 (2001).

    CAS  Article  Google Scholar 

  6. Kleffmann, T. et al. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr. Biol. 14, 354–362 (2004).

    CAS  Article  Google Scholar 

  7. Friso, G. et al. In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16, 478–499 (2004).

    CAS  Article  Google Scholar 

  8. Asatsuma, S. et al. Involvement of α-amylase I-1 in starch degradation in rice chloroplasts. Plant Cell Physiol. 46, 858–869 (2005).

    CAS  Article  Google Scholar 

  9. Hewet-Emmett, D. & Tashian, R. E. Functional diversity, conservation, and convergence in the evolution of the α-, β-, and γ-carbonic anhydrase gene families. Mol. Phyl. Evol. 5, 50–77 (1996).

    Article  Google Scholar 

  10. Emanuelsson, O., Nielsen H., Brunak, S. & von Heijne, G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300, 1005–1016 (2000).

    CAS  Article  Google Scholar 

  11. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Prot. Eng. 10, 1–6 (1997).

    CAS  Article  Google Scholar 

  12. Monné, M., Nilsson, I., Elofsson, A. & von Heijne, G. Turns in transmembrane helices: determination of the minimal length of a “helical hairpin” and derivation of a fine-grained turn propensity scale. J. Mol. Biol. 293, 807–814 (1999).

    Article  Google Scholar 

  13. Lerouge, P. et al. N-glycosylation biosynthesis in plants: recent developments and future trends. Plant Mol. Biol. 38, 31–48 (1998).

    CAS  Article  Google Scholar 

  14. Faye, L., Gomord, V., Fitchette-Laine, A. C. & Chrispeels, M. J. Affinity purification of antibodies specific for Asn-linked glycans containing α1–3 fucose or β1–2 xylose. Anal. Biochem. 209, 104–108 (1993).

    CAS  Article  Google Scholar 

  15. Rayon, C. et al. Characterization of N-glycans from Arabidopsis thaliana. Application to a fucose-deficient mutant. Plant Physiol. 119, 725–734 (1999).

    CAS  Article  Google Scholar 

  16. Bonin, C., Potter, I., Vanzin, G. F. & Reiter, W. D. The MUR1 gene of Arabidopsis thaliana encodes an isoform of GDP-D-mannose-4,6-dehydratase, catalyzing the first step in the de novo synthesis of GDP-L-fucose. Proc. Natl Acad. Sci. USA 94, 2085–2090 (1997).

    CAS  Article  Google Scholar 

  17. Ritzenthaler, C. et al. Reevaluation of the effects of brefeldin A on plant cells using tobacco bright yellow 2 cells expressing Golgi-targeted green fluorescent protein and COPI antisera. Plant Cell 14, 237–261 (2002).

    CAS  Article  Google Scholar 

  18. Lee, M. H. et al. ADP-ribosylation factor 1 of Arabidopsis plays a critical role in intracellular trafficking and maintenance of endoplasmic reticulum morphology in Arabidopsis. Plant Physiol. 129, 1507–1520 (2002).

    CAS  Article  Google Scholar 

  19. Zheng, H., Kunst, L., Hawes, C. & Moore, I. A GFP-based assay reveals a role for RHD3 in transport between the endoplasmic reticulum and Golgi apparatus. Plant J. 37, 398–414 (2004).

    CAS  Article  Google Scholar 

  20. Sulli, C. & Schwartzbach, S. D. The polyprotein precursor to the Euglena light-harvesting chlorophyll a/b-binding protein is transported to the Golgi apparatus prior to chloroplast import and polyprotein processing. J. Biol. Chem. 270, 13084–13090 (1995).

    CAS  Article  Google Scholar 

  21. Waller, R. F., Reed, M. B., Cowman, A. F. & McFaden, I. Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J. 19, 1794–1802 (2000).

    CAS  Article  Google Scholar 

  22. Delwiche, C. Tracing the thread of plastid diversity through the tapestry of life. Am. Nat. 154, S164–S177 (1999).

    CAS  Article  Google Scholar 

  23. Foth, B. J. et al. Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299, 705–708 (2003).

    CAS  Article  Google Scholar 

  24. Kilian, O. & Kroth, P. G. Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J. 41, 175–183 (2005).

    CAS  Article  Google Scholar 

  25. Moreau, P. et al. Lipid trafficking in plant cells. Prog. Lipid Res. 37, 371–391 (1998).

    CAS  Article  Google Scholar 

  26. Xu, C., Fan, J., Riekhof, W., Froehlich, J. E. & Benning, C. A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO J. 22, 2370–2379 (2003).

    CAS  Article  Google Scholar 

  27. Chen, M. H., Huang, L. F., Li, H.-M., Chen, Y. R. & Yu, S. M. Signal peptide-dependent targeting of a rice α-amylase and cargo proteins to plastids and extracellular compartments of plant cells. Plant Physiol. 135, 1367–1377 (2004).

    CAS  Article  Google Scholar 

  28. Levitan, A. et al. Dual targeting of the protein disulfide isomerase RB60 to the chloroplast and the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 102, 6225–6230 (2005).

    CAS  Article  Google Scholar 

  29. Kunst, L. in Methods in Molecular Biology, Arabidopsis Protocols Vol 82 (eds Martinez-Zapater, J. & Salinas, J.) 43–53 (Humana Press Inc., Totowa, New Jersey, USA, 1998).

    Book  Google Scholar 

  30. Kozak, M. Regulation of translation in eukaryotic systems. Annu. Rev. Cell. Biol. 8, 197–225 (1992).

    CAS  Article  Google Scholar 

  31. Hermansson, M., Monné, M. & von Heijne, G. Formation of helical hairpins during membrane protein integration into the endoplasmic reticulum membrane. Role of the N- and C-terminal flanking regions. J. Mol. Biol. 313, 1171–1179 (2001).

    CAS  Article  Google Scholar 

  32. Chiu, W. L. et al. Engineered GFP as a vital reporter in plants. Curr. Biol. 6, 325–330 (1996).

    CAS  Article  Google Scholar 

  33. Gasparian, M. et al. Identification and characterization of an 18-kilodalton, VAMP-like protein in suspension-cultured carrot cells. Plant Physiol. 122, 25–33 (2000).

    CAS  Article  Google Scholar 

Download references


We thank A. Kraut for technical assistance in the transient expression of GFP fusions in plant cells; L. Faye for the gift of antibodies against xylose and fucose residues; C. Robinson for helpful discussion; and J. Brangeon and R. Boyer for technical help in the immunocytochemistry experiments. The authors are grateful to B. Martin for critical reading of the manuscript. This work was supported by grants from the Swedish National Research Council, FORMAS, Wallenberg and Kempe Foundations, and the Swedish Foundation for Strategic Research.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Göran Samuelsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Methods and Results plus Supplementary figures S1, S2 and S3 (PDF 2717 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Villarejo, A., Burén, S., Larsson, S. et al. Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7, 1224–1231 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing