Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome

Abstract

Although HEF1 has a well-defined role in integrin-dependent attachment signalling at focal adhesions, it relocalizes to the spindle asters at mitosis. We report here that overexpression of HEF1 causes an increase in centrosome numbers and multipolar spindles, resembling defects induced by manipulation of the mitotic regulatory kinase Aurora-A (AurA). We show that HEF1 associates with and controls activation of AurA. We also show that HEF1 depletion causes centrosomal splitting, mono-astral spindles and hyperactivation of Nek2, implying additional action earlier in the cell cycle. These results provide new insight into the role of an adhesion protein in coordination of cell attachment and division.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HEF1 localization to the centrosome: cell-cycle and sequence dependence.
Figure 2: Overexpression, stabilization and depletion of HEF1.
Figure 3: Overexpression and stabilization of HEF1 induce supernumerary centrosomes and multipolar mitotic spindles.
Figure 4: Depletion of HEF1 induces centrosomal splitting and a mono-astral mitotic spindle.
Figure 5: HEF1 associates with AurA and controls AurA activation.
Figure 6: Delineation of the HEF1-AurA interaction.
Figure 7: HEF1 depletion affects Nek2 activation and association of proteins with the PCM.
Figure 8: HEF1 activities at the centrosome and in cell spreading.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Bouton, A. H., Riggins, R. B. & Bruce-Staskal, P. J. Functions of the adapter protein Cas: signal convergence and the determination of cellular responses. Oncogene 20, 6448–6458 (2001).

    Article  CAS  Google Scholar 

  2. O'Neill, G. M., Fashena, S. J. & Golemis, E. A. Integrin signaling: a new Cas(t) of characters enters the stage. Trends Cell Biol. 10, 111–119 (2000).

    Article  CAS  Google Scholar 

  3. Law, S. F., Zhang, Y.-Z., Klein-Szanto, A. & Golemis, E. A. Cell-cycle regulated processing of HEF1 to multiple protein forms differentially targeted to multiple compartments. Mol. Cell. Biol. 18, 3540–3551 (1998).

    Article  CAS  Google Scholar 

  4. Hirota, T. et al. Zyxin, a regulator of actin filament assembly, targets the mitotic apparatus by interacting with h-warts/LATS1 tumor suppressor. J. Cell Biol. 149, 1073–1086 (2000).

    Article  CAS  Google Scholar 

  5. Herreros, L. et al. Paxillin localizes to the lymphocyte microtubule organizing center and associates with the microtubule cytoskeleton. J. Biol. Chem. 275, 26436–26440 (2000).

    Article  CAS  Google Scholar 

  6. Rodriguez-Fernandez, J. L. et al. The interaction of activated integrin lymphocyte function-associated antigen 1 with ligand intercellular adhesion molecule 1 induces activation and redistribution of focal adhesion kinase and proline-rich tyrosine kinase 2 in T lymphocytes. Mol. Biol. Cell 10, 1891–1907 (1999).

    Article  CAS  Google Scholar 

  7. Etienne-Manneville, S. & Hall, A. Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature 421, 753–756 (2003).

    Article  CAS  Google Scholar 

  8. Yvon, A. M. et al. Centrosome reorientation in wound-edge cells is cell type specific. Mol. Biol. Cell 13, 1871–1880 (2002).

    Article  CAS  Google Scholar 

  9. Segal, M. & Bloom, K. Control of spindle polarity and orientation in Saccharomyces cerevisiae. Trends Cell Biol. 11, 160–166 (2001).

    Article  CAS  Google Scholar 

  10. Jackman, M., Lindon, C., Nigg, E. A. & Pines, J. Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nature Cell Biol. 5, 143–148 (2003).

    Article  CAS  Google Scholar 

  11. Hirota, T. et al. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114, 585–598 (2003).

    Article  CAS  Google Scholar 

  12. Faragher, A. J. & Fry, A. M. Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. Mol. Biol. Cell 14, 2876–2889 (2003).

    Article  CAS  Google Scholar 

  13. O'Neill, G. M. & Golemis, E. A. Proteolysis of the docking protein HEF1 and implications for focal adhesion dynamics. Mol. Cell. Biol. 21, 5094–5108 (2001).

    Article  CAS  Google Scholar 

  14. Serebriiskii, I. G. et al. Detection of peptides, proteins, and drugs that selectively interact with protein targets. Genome Res. 12, 1785–1791 (2002).

    Article  CAS  Google Scholar 

  15. Meraldi, P. & Nigg, E. A. The centrosome cycle. FEBS Lett. 521, 9–13 (2002).

    Article  CAS  Google Scholar 

  16. Bornens, M. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. 14, 25–34 (2002).

    Article  CAS  Google Scholar 

  17. Marumoto, T. et al. Aurora-a kinase maintains the fidelity of early and late mitotic events in HeLa cells. J. Biol. Chem. 278, 51786–51795 (2003).

    Article  CAS  Google Scholar 

  18. Hannak, E., Kirkham, M., Hyman, A. A. & Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol. 155, 1109–1116 (2001).

    Article  CAS  Google Scholar 

  19. Cheeseman, I. M. et al. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111, 163–172 (2002).

    Article  CAS  Google Scholar 

  20. Fry, A. M. The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene 21, 6184–6194 (2002).

    Article  CAS  Google Scholar 

  21. Mayor, T., Hacker, U., Stierhof, Y. D. & Nigg, E. A. The mechanism regulating the dissociation of the centrosomal protein C-Nap1 from mitotic spindle poles. J. Cell Sci. 115, 3275–3284 (2002).

    CAS  PubMed  Google Scholar 

  22. Fashena, S. J., Einarson, M. B., O'Neill, G. M., Patriotis, C. P. & Golemis, E. A. Dissection of HEF1-dependent functions in motility and transcriptional regulation. J. Cell. Sci. 115, 99–111 (2002).

    CAS  PubMed  Google Scholar 

  23. Yamashita, Y. M., Jones, D. L. & Fuller, M. T. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301, 1547–1550 (2003).

    Article  CAS  Google Scholar 

  24. Schneider, S. Q. & Bowerman, B. Cell polarity and the cytoskeleton in the Caenorhabditis elegans zygote. Annu. Rev. Genet. 37, 221–249 (2003).

    Article  CAS  Google Scholar 

  25. Salisbury, J. L. Centrosomes: coiled-coils organize the cell center. Curr. Biol. 13, R88–R90 (2003).

    Article  CAS  Google Scholar 

  26. Rieder, C. L., Faruki, S. & Khodjakov, A. The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol. 11, 413–419 (2001).

    Article  CAS  Google Scholar 

  27. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003).

    Article  CAS  Google Scholar 

  28. Dieterich, C., Wang, H., Rateitschak, K., Luz, H. & Vingron, M. CORG: a database for COmparative Regulatory Genomics. Nucleic Acids Res. 31, 55–57 (2003).

    Article  CAS  Google Scholar 

  29. Warner, S. L., Bearss, D. J., Han, H. & Von Hoff, D. D. Targeting Aurora-2 kinase in cancer. Mol. Cancer Ther. 2, 589–595 (2003).

    Article  CAS  Google Scholar 

  30. D'Assoro, A. B. et al. Amplified centrosomes in breast cancer: a potential indicator of tumor aggressiveness. Breast Cancer Res. Treat. 75, 25–34 (2002).

    Article  CAS  Google Scholar 

  31. Hayward, D. G. et al. The centrosomal kinase Nek2 displays elevated levels of protein expression in human breast cancer. Cancer Res. 64, 7370–7376 (2004).

    Article  CAS  Google Scholar 

  32. van der Flier, S. et al. Bcar1/p130Cas protein and primary breast cancer: prognosis and response to tamoxifen treatment. J. Natl Cancer Inst. 92, 120–127 (2000).

    Article  CAS  Google Scholar 

  33. Hakak, Y. & Martin, G. S. Cas mediates transcriptional activation of the serum response element by Src. Mol. Cell Biol. 19, 6953–6962 (1999).

    Article  CAS  Google Scholar 

  34. D'Assoro, A. B., Stivala, F., Barrett, S., Ferrigno, G. & Salisbury, J. L. GFP–centrin as a marker for centriole dynamics in the human breast cancer cell line MCF-7. Ital. J. Anat. Embryol. 106, 103–110 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to T. Moyer for assistance with some experiments, and S. Seeholzer for assistance with mass spectrometry analysis. This work was supported by research grant NIH CA63366, the Susan Komen Breast Cancer Foundation, the Department of Defence, and Tobacco Settlement funding from the State of Pennsylvania (to E.A.G.); and by NIH core grant CA-06927 to Fox Chase Cancer Center. E.N.P. was supported by the Department of Defence Breast Cancer Training grant DAMD17-00-1-0249. We thank P. Chumakov and A. Ivanov for the pLV-CMV-H4, pUST and pUP vectors, J. Rattner for anti-ninein antibody, J. Salisbury for the GFP–centrin construct, and J. Chernoff for the pFLAG vector. We are grateful to A. Ivanov, J. Chernoff, E. Henske and M. Murphy for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica A. Golemis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4 (PDF 837 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pugacheva, E., Golemis, E. The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome. Nat Cell Biol 7, 937–946 (2005). https://doi.org/10.1038/ncb1309

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1309

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing