Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multiple roles for separase auto-cleavage during the G2/M transition

Abstract

The cysteine protease separase triggers anaphase onset by cleaving chromosome-bound cohesin. In humans, separase also cleaves itself at multiple sites, but the biological significance of this reaction has been elusive. Here we show that preventing separase auto-cleavage, via targeted mutagenesis of the endogenous hSeparase locus in somatic cells, interferes with entry into and progression through mitosis. The initial delay in mitotic entry was not dependent on the G2 DNA damage checkpoint, but rather involved improper stabilization of the mitosis-inhibiting kinase Wee1. During M phase, cells deficient in separase auto-cleavage exhibited striking defects in spindle assembly and metaphase chromosome alignment, revealing an additional early mitotic function for separase. Both the G2 and M phase phenotypes could be recapitulated by separase RNA interference and corrected by re-expressing wild-type separase in trans. We conclude that separase auto-cleavage coordinates multiple aspects of the G2/M programme in human cells, thus contributing to the timing and efficiency of chromosome segregation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of human cells deficient in separase auto-cleavage.
Figure 2: Preventing separase auto-cleavage retards mitotic entry.
Figure 3: NC3/NC2 cells are delayed in late G2 by a checkpoint-independent mechanism involving Wee1.
Figure 4: NC3/NC2 cells exhibit intra-mitotic defects in spindle assembly and metaphase chromosome alignment.
Figure 5: Rescue of mitotic entry and chromosome alignment defects by re-expression of wild-type separase.

Similar content being viewed by others

References

  1. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  CAS  Google Scholar 

  2. Nasmyth, K. Segregating sister genomes: the molecular biology of chromosome separation. Science 297, 559–565 (2002).

    Article  CAS  Google Scholar 

  3. Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).

    Article  CAS  Google Scholar 

  4. Herzig, A., Lehner, C. F. & Heidmann, S. Proteolytic cleavage of the THR subunit during anaphase limits Drosophila separase function. Genes Dev. 16, 2443–2454 (2002).

    Article  CAS  Google Scholar 

  5. Waizenegger, I., Gimenez-Abian, J., Wernic, D. & Peters, J. Regulation of human separase by securin binding and autocleavage. Curr. Biol. 12, 1368–1378 (2002).

    Article  CAS  Google Scholar 

  6. Zou, H., Stemman, O., Anderson, J. S., Mann, M. & Kirschner, M. W. Anaphase specific auto-cleavage of separase. FEBS Lett. 528, 246–250 (2002).

    Article  CAS  Google Scholar 

  7. Chestukhin, A., Pfeffer, C., Milligan, S., DeCaprio, J. A. & Pellman, D. Processing, localization, and requirement of human separase for normal anaphase progression. Proc. Natl Acad. Sci. USA 100, 4574–4579 (2003).

    Article  CAS  Google Scholar 

  8. Jallepalli, P. V. et al. Securin is required for chromosomal stability in human cells. Cell 105, 445–457 (2001).

    Article  CAS  Google Scholar 

  9. Hirata, R., Chamberlain, J., Dong, R. & Russell, D. W. Targeted transgene insertion into human chromosomes by adeno-associated virus vectors. Nature Biotechnol. 20, 735–738 (2002).

    Article  CAS  Google Scholar 

  10. Kohli, M., Rago, C., Lengauer, C., Kinzler, K. W. & Vogelstein, B. Facile methods for generating human somatic cell gene knockouts using recombinant adeno-associated viruses. Nucleic Acids Res. 32, e3 (2004).

    Article  Google Scholar 

  11. Nagao, K., Adachi, Y. & Yanagida, M. Separase-mediated cleavage of cohesin at interphase is required for DNA repair. Nature 430, 1044–1048 (2004).

    Article  CAS  Google Scholar 

  12. Gould, K. L. & Nurse, P. Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 342, 39–45 (1989).

    Article  CAS  Google Scholar 

  13. Watanabe, N. et al. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFβ-TrCP. Proc. Natl Acad. Sci. USA 101, 4419–4424 (2004).

    Article  CAS  Google Scholar 

  14. Peng, C. Y. et al. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501–1505 (1997).

    Article  CAS  Google Scholar 

  15. Gray, N. S. et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281, 533–538 (1998).

    Article  CAS  Google Scholar 

  16. Blangy, A. et al. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83, 1159–1169 (1995).

    Article  CAS  Google Scholar 

  17. Compton, D. A. & Luo, C. Mutation of the predicted p34cdc2 phosphorylation sites in NuMA impair the assembly of the mitotic spindle and block mitosis. J. Cell Sci. 108, 621–633 (1995).

    CAS  PubMed  Google Scholar 

  18. Mishima, M., Pavicic, V., Gruneberg, U., Nigg, E. A. & Glotzer, M. Cell cycle regulation of central spindle assembly. Nature 430, 908–913 (2004).

    Article  CAS  Google Scholar 

  19. van Vugt, M. A. et al. Polo-like kinase-1 is required for bipolar spindle formation but is dispensable for anaphase promoting complex/Cdc20 activation and initiation of cytokinesis. J. Biol. Chem. 279, 36841–36854 (2004).

    Article  CAS  Google Scholar 

  20. Sumara, I. et al. Roles of Polo-like kinase 1 in the assembly of functional mitotic spindles. Curr. Biol. 14, 1712–1722 (2004).

    Article  CAS  Google Scholar 

  21. Hirota, T. et al. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114, 585–598 (2003).

    Article  CAS  Google Scholar 

  22. Lampson, M. A. & Kapoor, T. M. The human mitotic checkpoint protein BubR1 regulates chromosome-spindle attachments. Nature Cell Biol. 7, 93–98 (2005).

    Article  CAS  Google Scholar 

  23. Stegmeier, F., Visintin, R. & Amon, A. Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell 108, 207–220 (2002).

    Article  CAS  Google Scholar 

  24. Sullivan, M. & Uhlmann, F. A non-proteolytic function of separase links the onset of anaphase to mitotic exit. Nature Cell Biol. 5, 249–254 (2003).

    Article  CAS  Google Scholar 

  25. Pereira, G. & Schiebel, E. Separase regulates INCENP-Aurora B anaphase spindle function through Cdc14. Science 302, 2120–2124 (2003).

    Article  CAS  Google Scholar 

  26. Ross, K. E. & Cohen-Fix, O. A Role for the FEAR pathway in nuclear positioning during anaphase. Dev. Cell 6, 729–735 (2004).

    Article  CAS  Google Scholar 

  27. Viadiu, H., Stemmann, O., Kirschner, M. W. & Walz, T. Domain structure of separase and its binding to securin as determined by EM. Nature Struct. Mol. Biol. 12, 552–553 (2005).

    Article  CAS  Google Scholar 

  28. Gorr, I. H., Boos, D. & Stemmann, O. Mutual inhibition of separase and cdk1 by two-step complex formation. Mol. Cell 19, 135–141 (2005).

    Article  CAS  Google Scholar 

  29. Zou, H., McGarry, T. J., Bernal, T. & Kirschner, M. W. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285, 418–422 (1999).

    Article  CAS  Google Scholar 

  30. Stemmann, O., Zou, H., Gerber, S. A., Gygi, S. P. & Kirschner, M. W. Dual inhibition of sister chromatid separation at metaphase. Cell 107, 715–726 (2001).

    Article  CAS  Google Scholar 

  31. Pei, L. & Melmed, S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol. Endocrinol. 11, 433–441 (1997).

    Article  CAS  Google Scholar 

  32. Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of metastasis in primary solid tumors. Nature Genet. 33, 49–54 (2003).

    Article  CAS  Google Scholar 

  33. Hauf, S. et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol. 161, 281–294 (2003).

    Article  CAS  Google Scholar 

  34. Kanda, T., Sullivan, K. F. & Wahl, G. M. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8, 377–385 (1998).

    Article  CAS  Google Scholar 

  35. Lengauer, C., Kinzler, K. W. & Vogelstein, B. DNA methylation and genetic instability in colorectal cancer cells. Proc. Natl Acad. Sci. USA 94, 2545–2550 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Chestukhin for providing the XJ11-1B12 antibody and F. Weis-Garcia for expert assistance with hybridoma screening and monoclonal antibody production. M.P. was supported through an American-Italian Cancer Foundation postdoctoral fellowship. Additional support was provided to P.V.J. by the Pew Scholars Program in the Biomedical Sciences, the V Foundation for Cancer Research, and the National Cancer Institute, National Institutes of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papi, M., Berdougo, E., Randall, C. et al. Multiple roles for separase auto-cleavage during the G2/M transition. Nat Cell Biol 7, 1029–1035 (2005). https://doi.org/10.1038/ncb1303

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1303

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing