Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A GTPase-activating protein controls Rab5 function in endocytic trafficking

Abstract

Rab-family GTPases are conserved regulators of membrane trafficking that cycle between inactive GDP-bound and activated GTP-bound states1,2. A key determinant of Rab function is the lifetime of the GTP-bound state3. As Rabs have a low intrinsic rate of GTP hydrolysis, this process is under the control of GTP-hydrolysis-activating proteins (GAPs)1. Due to the large number of Rabs and GAPs that are encoded by the human genome, it has proven difficult to assign specific functional relationships to these proteins. Here, we identify a Rab5-specific GAP (RabGAP-5), and show that RN-Tre (previously described as a Rab5 GAP) acts on Rab41. RabGAP-5 overexpression triggers a loss of the Rab5 effector EEA1 from endosomes and blocks endocytic trafficking. By contrast, depletion of RabGAP-5 results in increased endosome size, more endosome-associated EEA1, and disrupts the trafficking of EGF and LAMP1. RabGAP-5 therefore limits the amount of activated Rab5, and thereby regulates trafficking through endosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of a specific GAP for Rab5.
Figure 2: RabGAP-5 regulates endocytic trafficking.
Figure 3: RabGAP-5 expression blocks the endocytosis of EGF.
Figure 4: RabGAP-5 is an essential regulator of Rab5.
Figure 5: RabGAP-5 controls endocytic trafficking.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–117 (2001).

    Article  CAS  Google Scholar 

  2. Pfeffer, S. & Aivazian, D. Targeting Rab GTPases to distinct membrane compartments. Nature Rev. Mol. Cell Biol. 5, 886–896 (2004).

    Article  CAS  Google Scholar 

  3. Rybin, V. et al. GTPase activity of Rab5 acts as a timer for endocytic membrane fusion. Nature 383, 266–269 (1996).

    Article  CAS  Google Scholar 

  4. Munro, S. Organelle identity and the targeting of peripheral membrane proteins. Curr. Opin. Cell Biol. 14, 506–514 (2002).

    Article  CAS  Google Scholar 

  5. Barr, F. A. & Short, B. Golgins in the structure and dynamics of the Golgi apparatus. Curr. Opin. Cell Biol. 15, 405–413 (2003).

    Article  CAS  Google Scholar 

  6. Vetter, I. R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    Article  CAS  Google Scholar 

  7. Rak, A. et al. Structure of Rab GDP-dissociation inhibitor in complex with prenylated YPT1 GTPase. Science 302, 646–650 (2003).

    Article  CAS  Google Scholar 

  8. Segev, N. Ypt/rab gtpases: regulators of protein trafficking. Sci STKE 2001, RE11 (2001).

    CAS  PubMed  Google Scholar 

  9. Sivars, U., Aivazian, D. & Pfeffer, S. R. Yip3 catalyses the dissociation of endosomal Rab-GDI complexes. Nature 425, 856–859 (2003).

    Article  CAS  Google Scholar 

  10. Walch-Solimena, C., Collins, R. N. & Novick, P. J. Sec2p mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles. J. Cell Biol. 137, 1495–1509 (1997).

    Article  CAS  Google Scholar 

  11. Horiuchi, H. et al. A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90, 1149–1159 (1997).

    Article  CAS  Google Scholar 

  12. Delprato, A., Merithew, E. & Lambright, D. G. Structure, exchange determinants, and family-wide rab specificity of the tandem helical bundle and Vps9 domains of Rabex-5. Cell 118, 607–617 (2004).

    Article  CAS  Google Scholar 

  13. Strom, M., Vollmer, P., Tan, T. J. & Gallwitz, D. A yeast GTPase-activating protein that interacts specifically with a member of the Ypt/Rab family. Nature 361, 736–739 (1993).

    Article  CAS  Google Scholar 

  14. Albert, S. & Gallwitz, D. Two new members of a family of Ypt/Rab GTPase activating proteins. Promiscuity of substrate recognition. J. Biol. Chem. 274, 33186–33189 (1999).

    Article  CAS  Google Scholar 

  15. Albert, S., Will, E. & Gallwitz, D. Identification of the catalytic domains and their functionally critical arginine residues of two yeast GTPase-activating proteins specific for Ypt/Rab transport GTPases. EMBO J. 18, 5216–5225 (1999).

    Article  CAS  Google Scholar 

  16. Rak, A. et al. Crystal structure of the GAP domain of Gyp1p: first insights into interaction with Ypt/Rab proteins. EMBO J. 19, 5105–5113 (2000).

    Article  CAS  Google Scholar 

  17. Ahmadian, M. R., Stege, P., Scheffzek, K. & Wittinghofer, A. Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nature Struct. Biol. 4, 686–689 (1997).

    Article  CAS  Google Scholar 

  18. Richardson, C. J., Jones, S., Litt, R. J. & Segev, N. GTP hydrolysis is not important for Ypt1 GTPase function in vesicular transport. Mol. Cell. Biol. 18, 827–838 (1998).

    Article  CAS  Google Scholar 

  19. McBride, H. M. et al. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98, 377–386 (1999).

    Article  CAS  Google Scholar 

  20. Christoforidis, S., McBride, H. M., Burgoyne, R. D. & Zerial, M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 397, 621–625 (1999).

    Article  CAS  Google Scholar 

  21. Lanzetti, L. et al. The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature 408, 374–377 (2000).

    Article  CAS  Google Scholar 

  22. Lanzetti, L., Palamidessi, A., Areces, L., Scita, G. & Di Fiore, P. P. Rab5 is a signalling GTPase involved in actin remodelling by receptor tyrosine kinases. Nature 429, 309–314 (2004).

    Article  CAS  Google Scholar 

  23. Rubino, M., Miaczynska, M., Lippe, R. & Zerial, M. Selective membrane recruitment of EEA1 suggests a role in directional transport of clathrin-coated vesicles to early endosomes. J. Biol. Chem. 275, 3745–3748 (2000).

    Article  CAS  Google Scholar 

  24. Lawe, D. C. et al. Sequential roles for phosphatidylinositol 3-phosphate and Rab5 in tethering and fusion of early endosomes via their interaction with EEA1. J. Biol. Chem. 277, 8611–8617 (2002).

    Article  CAS  Google Scholar 

  25. Stenmark, H. et al. Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J. 13, 1287–1296 (1994).

    Article  CAS  Google Scholar 

  26. Cook, N. R., Row, P. E. & Davidson, H. W. Lysosome associated membrane protein 1 (Lamp1) traffics directly from the TGN to early endosomes. Traffic 5, 685–699 (2004).

    Article  CAS  Google Scholar 

  27. Rohrer, J., Schweizer, A., Russell, D. & Kornfeld, S. The targeting of Lamp1 to lysosomes is dependent on the spacing of its cytoplasmic tail tyrosine sorting motif relative to the membrane. J. Cell Biol. 132, 565–576 (1996).

    Article  CAS  Google Scholar 

  28. Lawe, D. C., Patki, V., Heller-Harrison, R., Lambright, D. & Corvera, S. The FYVE domain of early endosome antigen 1 is required for both phosphatidylinositol 3-phosphate and Rab5 binding. Critical role of this dual interaction for endosomal localization. J. Biol. Chem. 275, 3699–3705 (2000).

    Article  CAS  Google Scholar 

  29. Lee, I. K. et al. MAP, a protein interacting with a tumor suppressor, merlin, through the run domain. Biochem. Biophys. Res. Commun. 325, 774–783 (2004).

    Article  CAS  Google Scholar 

  30. Clague, M. J. & Urbe, S. The interface of receptor trafficking and signalling. J. Cell Sci. 114, 3075–3081 (2001).

    CAS  PubMed  Google Scholar 

  31. Ichioka, F. et al. Identification of Rab GTPase-activating protein-like protein (RabGAPLP) as a novel Alix/AIP1-interacting protein. Biosci. Biotechnol. Biochem. 69, 861–865 (2005).

    Article  CAS  Google Scholar 

  32. Matsuo, H. et al. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303, 531–534 (2004).

    Article  CAS  Google Scholar 

  33. de Leeuw, H. P. et al. Small GTP-binding proteins in human endothelial cells. Br. J. Haematol. 103, 15–19 (1998).

    Article  CAS  Google Scholar 

  34. Du, L. L. & Novick, P. Purification and properties of a GTPase-activating protein for yeast Rab GTPases. Methods Enzymol. 329, 91–99 (2001).

    Article  CAS  Google Scholar 

  35. Neef, R. et al. Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J. Cell Biol. 162, 863–875 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank R. Neef, U. Grüneberg, M. Clague and S. Urbé for useful discussions during the course of this work. The Max–Planck Society supports research in the group of F.A.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis A. Barr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 - S4 (PDF 607 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, A., Fuchs, E., Kopajtich, R. et al. A GTPase-activating protein controls Rab5 function in endocytic trafficking. Nat Cell Biol 7, 887–893 (2005). https://doi.org/10.1038/ncb1290

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1290

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing