Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Load-dependent kinetics of myosin-V can explain its high processivity

Abstract

Recent studies provide strong evidence that single myosin class V molecules transport vesicles and organelles processively along F-actin, taking several 36-nm steps, 'hand over hand', for each diffusional encounter. The mechanisms regulating myosin-V's processivity remain unknown. Here, we have used an optical-tweezers-based transducer to measure the effect of load on the mechanical interactions between rabbit skeletal F-actin and a single head of mouse brain myosin-V, which produces its working stroke in two phases. We found that the lifetimes of the first phase of the working stroke changed exponentially and about 10-fold over a range of pushing and pulling forces of ± 1.5 pN. Stiffness measurements suggest that intramolecular forces could approach 3.6 pN when both heads are bound to F-actin, in which case extrapolation would predict the detachment kinetics of the front head to slow down 50-fold and the kinetics of the rear head to accelerate respectively. This synchronizing effect on the chemo-mechanical cycles of the heads increases the probability of the trail head detaching first and causes a strong increase in the number of forward steps per diffusional encounter over a system with no strain dependence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Intramolecular strain during processive movement.
Figure 2: Effect of load on single molecule mechanical interactions measured for myosin-V S1 (MVS1).
Figure 3: Load dependence of the two phases of the working stroke.
Figure 4: Load dependence of rates k1 and k2 for myosin-V and smooth muscle myosin.
Figure 5: Model for processive movement of myosin-V along the 36-nm helical repeat of actin.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Reck-Peterson, S., Provance, D. W., Mooseker, M. S. & Mercer, J. A. Review: Class V myosins. Biochim. Biophys. Acta 1496, 36–51 (2000).

    Article  CAS  Google Scholar 

  2. Sellers, J. R. Myosins (Oxford University Press, Oxford, 1999).

    Google Scholar 

  3. Cheney, R. E. et al. Brain Myosin-V is a two-headed unconventional myosin with motor activity. Cell 75, 13–23 (1993).

    Article  CAS  Google Scholar 

  4. Miller, E. & Sheetz, M. P. Characterization of myosin-V binding to brain vesicles. J. Biol. Chem. 275, 2598–2606 (2000).

    Article  CAS  Google Scholar 

  5. Vale, R. D. Myosin V motor proteins: marching stepwise towards a mechanism. J. Cell Biol. 163, 445–450 (2003).

    Article  CAS  Google Scholar 

  6. Mehta, A. D. et al. Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999).

    Article  CAS  Google Scholar 

  7. Rief, M. et al. Myosin-V stepping kinetics: A molecular model for processivity. Proc. Natl Acad. Sci. 97, 9482–9486 (2000).

    Article  CAS  Google Scholar 

  8. Sakamoto, T., Amitani, I., Yokota, E. & Ando, T. Direct observation of processive movement by individual myosin-V molecules. Biochem. Biophys. Res. Comm. 272, 586–590 (2000).

    Article  CAS  Google Scholar 

  9. Sakamoto, T. et al. Neck length and processivity of myosin-V. J. Biol. Chem. 278, 29201–29207 (2003).

    Article  CAS  Google Scholar 

  10. Yildiz, A. et al. Myosin-V walks hand over hand: single fluorophore imaging with 1.5nm localisation. Science 300, 2061–2065 (2003).

    Article  CAS  Google Scholar 

  11. Forkey, J. N., Quinlan, M. E., Shaw, M. A., Corrie, J. E. & Goldman, Y. E. Three dimensional structural dynamics of myosin-V by single-molecule fluorescence polarisation. Nature 422, 399–404 (2003).

    Article  CAS  Google Scholar 

  12. Walker, M. et al. Two-headed binding of a processive myosin to F-actin. Nature 405, 804–807 (2000).

    Article  CAS  Google Scholar 

  13. Veigel, C., Wang, F., Bartoo, M. L., Sellers, J. R. & Molloy, J. E. The gated gait of the processive molecular motor myosin-V. Nature Cell Biol. 4, 59–65 (2002).

    Article  CAS  Google Scholar 

  14. Ali, M. Y. et al. Myosin-V is a left-handed spiral motor on the right-handed actin helix. Nature Struct. Biol. 9, 464–467 (2002).

    Article  CAS  Google Scholar 

  15. Tanaka, H. et al. The motor domain determines the large step of myosin V. Nature 415, 192–195 (2002).

    Article  CAS  Google Scholar 

  16. Schnitzer, M. J. & Block, S. M. Statistical kinetics of processive enzymes. Cold Spring Harb. Symp. Quant. Biol. 60, 793–802 (1995).

    Article  CAS  Google Scholar 

  17. Kolomeisky, A. B. & Fisher, M. E. A simple kinetic model describes the processivity of myosin-V. Biophys. J. 84, 1642–1650 (2003).

    Article  CAS  Google Scholar 

  18. Lan, G. & Sun, S. X. Dynamics of myosin processivity. Biophys. J. 88, 4107–4117 (2005).

    Article  CAS  Google Scholar 

  19. Coureux, P. D., Sweeney, H. L. & Houdusse, A. Three myosin-V structures delineate essential features of chemo-mechanical transduction. EMBO J. 23, 4527–4537 (2004).

    Article  CAS  Google Scholar 

  20. Purcell, T. J., Morris, C., Spudich, J. A. & Sweeney, H. L. Role of the lever arm in the processive stepping of myosin-V. Proc. Natl Acad. Sci. USA 92, 14159–14164 (2002).

    Article  Google Scholar 

  21. Huxley, A. F. Muscle structure and theories of contraction. Progr. Biophys. Biophys. Chem. 7, 255–318 (1957).

    Article  CAS  Google Scholar 

  22. De La Cruz, E. M., Wells, A. L., Rosenfeld, S. S., Ostap, E. M. & Sweeney, H. L. The kinetic mechanism of myosin-V. Proc. Natl Acad. Sci. 96, 13726–13731 (1999).

    Article  CAS  Google Scholar 

  23. Baker, J. E. et al. Myosin-V processivity: multiple kinetic pathways for head-to-head coordination. Proc. Natl Acad. Sci. USA 101, 5542–5546 (2004).

    Article  CAS  Google Scholar 

  24. Clemen, A. E. et al. Force dependent stepping kinetics of myosin-V. Biophys. J. 88, 4402–4410 (2005).

    Article  CAS  Google Scholar 

  25. Moore, J. R., Krementsova, E. B., Trybus, K. M. & Warshaw, D. M. Myosin-V exhibits a high duty cycle and large unitary displacement. J. Cell Biol. 155, 625–635 (2001).

    Article  CAS  Google Scholar 

  26. Uemura, S., Higuchi, H., Olivares, A. O., DeLaCruz, E. M. & Ishiwata, S. Mechanochemical coupling of two substeps in a single myosin-V motor. Nature Struct. Biol. 11, 877–883 (2004).

    Article  CAS  Google Scholar 

  27. Rosenfeld, S. S. & Sweeney, H. L. A model for myosin-V processivity. J. Biol. Chem. 279, 40100–40111 (2004).

    Article  CAS  Google Scholar 

  28. Molloy, J. E., Burns, J. E., Kendrick-Jones, J., Tregear, R. T. & White, D. C. S. Movement and force produced by a single myosin head. Nature 378, 209–212 (1995).

    Article  CAS  Google Scholar 

  29. Veigel, C., Bartoo, M. L., White, D. C. S, Sparrow, J. C. & Molloy, J. E. The stiffness of rabbit skeletal, acto-myosin crossbridges determined with an optical tweezers transducer. Biophys. J. 75, 1424–1438 (1998).

    Article  CAS  Google Scholar 

  30. Wang, F. et al. Effect of ADP and ionic strength on the kinetic and motile properties of recombinant mouse myosin-V. J. Biol. Chem. 275, 4329–4335 (2000).

    Article  CAS  Google Scholar 

  31. Veigel, C. et al. The motor protein myosin-I produces its working stroke in two steps. Nature 398, 530–533 (1999).

    Article  CAS  Google Scholar 

  32. Veigel, C., Molloy, J. E., Schmitz, S. & Kendrick-Jones, J. Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nature Cell Biol. 5, 980–986 (2003).

    Article  CAS  Google Scholar 

  33. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Inc., Sunderland, 2001).

    Google Scholar 

  34. Lymn, R. W. & Taylor, E. W. Mechanism of adenosine triphosphate hydrolysis by acto-myosin. Biochemistry 10, 4617–4624 (1971).

    Article  CAS  Google Scholar 

  35. Burgess, S. et al. The prepower stroke conformation of myosin-V. J. Cell Biol. 159, 983–991 (2002).

    Article  CAS  Google Scholar 

  36. Whittaker, M. et al. A 35-Å movement of smooth muscle myosin on ADP release. Nature 378, 748–751 (1995).

    Article  CAS  Google Scholar 

  37. Berger, C. E. M, Fagnant, P. M., Heizmann, S., Trybus, K. M. & Geeves, M. A. ADP binding induces and asymmetry between the heads of unphosphorylated myosin J. Biol. Chem. 276, 23240–23245 (2001).

    Article  CAS  Google Scholar 

  38. Lombardi, V. et al. Elastic distortion of the myosin head and repriming of the working stroke in muscle. Nature 374, 553–555 (1995).

    Article  CAS  Google Scholar 

  39. Cheney, R. E. Purification and assay of myosin-V. Methods Enzymol. 298, 3–18 (1998).

    Article  CAS  Google Scholar 

  40. Mehta, A. D., Finer, J. T. & Spudich, J. A. Stiffness of muscle myosin. Detection of single-molecule interactions using correlated thermal diffusion. Proc. Natl Acad. Sci. USA 94, 7927–7931 (1997).

    Article  CAS  Google Scholar 

  41. Tyska, M. J. et al. Two heads of myosin are better than one for generating force and motion. Proc. Natl. Acad. Sci. USA 96, 4402–4407 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Harvey for technical assistance, J. A. Hammer III for kindly supplying the MV clone, J. E. Molloy, J. Howard and M. A. Geeves for helpful discussions and critical reading of the manuscript, and MRC, The Royal Society, BBSRC and NIH for grant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Veigel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veigel, C., Schmitz, S., Wang, F. et al. Load-dependent kinetics of myosin-V can explain its high processivity. Nat Cell Biol 7, 861–869 (2005). https://doi.org/10.1038/ncb1287

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing