Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Endosome-to-cytosol transport of viral nucleocapsids

Abstract

During viral infection, fusion of the viral envelope with endosomal membranes and nucleocapsid release were thought to be concomitant events. We show here that for the vesicular stomatitis virus they occur sequentially, at two successive steps of the endocytic pathway. Fusion already occurs in transport intermediates between early and late endosomes, presumably releasing the nucleocapsid within the lumen of intra-endosomal vesicles, where it remains hidden. Transport to late endosomes is then required for the nucleocapsid to be delivered to the cytoplasm. This last step, which initiates infection, depends on the late endosomal lipid lysobisphosphatidic acid (LBPA) and its putative effector Alix/AIP1, and is regulated by phosphatidylinositol-3-phosphate (PtdIns(3)P) signalling via the PtdIns(3)P-binding protein Snx16. We conclude that the nucleocapsid is exported into the cytoplasm after the back-fusion of internal vesicles with the limiting membrane of late endosomes, and that this process is controlled by the phospholipids LBPA and PtdIns(3)P and their effectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fusion of individual viral particles in the endocytic pathway.
Figure 2: Role of microtubules in viral fusion and nucleocapsid release.
Figure 3: VSV infection requires transport to late endosomes.
Figure 4: Treatments that affect microtubules and LBPA reduce nucelocapsid release and viral protein synthesis.
Figure 5: Viral fusion and nucleocapsid release after PI(3)K inhibition.
Figure 6: Viral nucleocapsids reside within intraluminal endosomal vesicles.
Figure 7: Role of Hrs and PtdIns(3)P in viral fusion and nucleocapsid release.
Figure 8: Reconstitution of nucleocapsid release using an in vitro assay.

Similar content being viewed by others

References

  1. Gruenberg, J. The endocytic pathway: a mosaic of domains. Nature Rev. Mol. Cell Biol. 2, 721–730 (2001).

    Article  CAS  Google Scholar 

  2. Katzmann, D.J., Odorizzi, G. & Emr, S.D. Receptor downregulation and multivesicular-body sorting. Nature Rev. Mol. Cell Biol. 3, 893–905 (2002).

    Article  CAS  Google Scholar 

  3. Gruenberg, J. & Stenmark, H. The biogenesis of multivesicular endosomes. Nature Rev. Mol. Cell Biol. 5, 317–323 (2004).

    Article  CAS  Google Scholar 

  4. Escola, J.M. et al. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem. 273, 20121–20127 (1998).

    Article  CAS  Google Scholar 

  5. Griffiths, G., Hoflack, B., Simons, K., Mellman, I. & Kornfeld, S. The mannose-6-phosphate receptor and the biogenesis of lysosomes. Cell 52, 329–341 (1988).

    Article  CAS  Google Scholar 

  6. Murk, J.L., Stoorvogel, W., Kleijmeer, M.J. & Geuze, H.J. The plasticity of multivesicular bodies and the regulation of antigen presentation. Semin. Cell Dev. Biol. 13, 303–311 (2002).

    Article  CAS  Google Scholar 

  7. Kobayashi, T., Gu, F. & Gruenberg, J. Lipids, lipid domains and lipid-protein interactions in endocytic membrane traffic. Semin. Cell Dev. Biol. 9, 517–526 (1998).

    Article  CAS  Google Scholar 

  8. Kobayashi, T. et al. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 392, 193–197 (1998).

    Article  CAS  Google Scholar 

  9. Galve-de Rochemonteix, B. et al. Interaction of anti-phospholipid antibodies with late endosomes of human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 20, 563–574 (2000).

    Article  CAS  Google Scholar 

  10. Incardona, J.P., Gruenberg, J. & Roelink, H. Sonic hedgehog induces the segregation of Patched and Smoothened in endosomes. Curr. Biol. 12, 983–995 (2002).

    Article  CAS  Google Scholar 

  11. Lebrand, C. et al. Late endosome motility depends on lipids via the small GTPase Rab7. EMBO J. 21, 1289–1300 (2002).

    Article  CAS  Google Scholar 

  12. Matsuo, H. et al. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303, 531–534 (2004).

    Article  CAS  Google Scholar 

  13. Strack, B., Calistri, A., Craig, S., Popova, E. & Göttlinger, H.G. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114, 689–699 (2003).

    Article  CAS  Google Scholar 

  14. von Schwedler, U.K. et al. The protein network of HIV budding. Cell 114, 701–713 (2003).

    Article  CAS  Google Scholar 

  15. Whitney, J.A., Gomez, M., Sheff, D., Kreis, T.E. & Mellman, I. Cytoplasmic coat proteins involved in endosome function. Cell 83, 703–713 (1995).

    Article  CAS  Google Scholar 

  16. Marsh, M., Bolzau, E. & Helenius, A. Penetration of Semliki Forest virus from acidic prelysosomal vacuoles. Cell 32, 931–940 (1983).

    Article  CAS  Google Scholar 

  17. Pak, C.C., Puri, A. & Blumenthal, R. Conformational changes and fusion activity of vesicular stomatitis virus glycoprotein: [125I]iodonaphthyl azide photolabeling studies in biological membranes. Biochemistry 36, 8890–8896 (1997).

    Article  CAS  Google Scholar 

  18. Lakadamyali, M., Rust, M.J., Babcock, H.P. & Zhuang, X. Visualizing infection of individual influenza viruses. Proc. Natl Acad. Sci. USA 100, 9280–9285 (2003).

    Article  CAS  Google Scholar 

  19. Gruenberg, J., Griffiths, G. & Howell, K.E. Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro. J. Cell Biol. 108, 1301–1316 (1989).

    Article  CAS  Google Scholar 

  20. Gruenberg, J. & Maxfield, F. Membrane transport in the endocytic pathway. Curr. Opin. Cell Biol. 7, 552–563 (1995).

    Article  CAS  Google Scholar 

  21. Aniento, F., Emans, N., Griffiths, G. & Gruenberg, J. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J. Cell Biol. 123, 1373–1387 (1993).

    Article  CAS  Google Scholar 

  22. Marsh, M. & Bron, R. SFV infection in CHO cells: cell-type specific restrictions to productive virus entry at the cell surface. J. Cell Sci. 110, 95–103 (1997).

    CAS  PubMed  Google Scholar 

  23. Kobayashi, T. et al. Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nature Cell Biol. 1, 113–118 (1999).

    Article  CAS  Google Scholar 

  24. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  Google Scholar 

  25. Fernandez-Borja, M. et al. Multivesicular body morphogenesis requires phosphatidyl-inositol 3-kinase activity. Curr. Biol. 9, 55–58 (1999).

    Article  CAS  Google Scholar 

  26. Reaves, B.J., Bright, N.A., Mullock, B.M. & Luzio, J.P. The effect of wortmannin on the localisation of lysosomal type I integral membrane glycoproteins suggests a role for phosphoinositide 3-kinase activity in regulating membrane traffic late in the endocytic pathway. J. Cell Sci. 109, 749–762 (1996).

    CAS  PubMed  Google Scholar 

  27. Futter, C.E., Collinson, L.M., Backer, J.M. & Hopkins, C.R. Human VPS34 is required for internal vesicle formation within multivesicular endosomes. J. Cell Biol. 155, 1251–1264 (2001).

    Article  CAS  Google Scholar 

  28. Lloyd, T.E. et al. Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell 108, 261–269 (2002).

    Article  CAS  Google Scholar 

  29. Bache, K.G., Brech, A., Mehlum, A. & Stenmark, H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol. 162, 435–442 (2003).

    Article  CAS  Google Scholar 

  30. Khor, R., McElroy, L.J. & Whittaker, G.R. The ubiquitin-vacuolar protein sorting system is selectively required during entry of influenza virus into host cells. Traffic 4, 857–868 (2003).

    Article  CAS  Google Scholar 

  31. Gillooly, D.J. et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 (2000).

    Article  CAS  Google Scholar 

  32. Petiot, A., Faure, J., Stenmark, H. & Gruenberg, J. PI3P signaling regulates receptor sorting but not transport in the endosomal pathway. J. Cell Biol. 162, 971–979 (2003).

    Article  CAS  Google Scholar 

  33. Rhee, S.G. Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70, 281–312 (2001).

    Article  CAS  Google Scholar 

  34. Sbrissa, D., Ikonomov, O.C. & Shisheva, A. Phosphatidylinositol 3-phosphate-interacting domains in PIKfyve. Binding specificity and role in PIKfyve. Endomembrane localization. J. Biol. Chem. 277, 6073–6079 (2002).

    Article  CAS  Google Scholar 

  35. Carlton, J., Bujny, M., Rutherford, A. & Cullen, P. Sorting nexins — unifying trends and new perspectives. Traffic 6, 75–82 (2005).

    Article  CAS  Google Scholar 

  36. Hanson, B.J. & Hong, W. Evidence for a role of SNX16 in regulating traffic between the early and later endosomal compartments. J. Biol. Chem. 278, 34617–34630 (2003).

    Article  CAS  Google Scholar 

  37. Choi, J.H. et al. Sorting nexin 16 regulates EGF receptor trafficking by phosphatidylinositol-3-phosphate interaction with the Phox domain. J. Cell Sci. 117, 4209–4218 (2004).

    Article  CAS  Google Scholar 

  38. Sinclair, A.M. et al. Interaction of vesicular stomatitis virus-G pseudotyped retrovirus with CD34+ and CD34+ CD38− hematopoietic progenitor cells. Gene Ther. 4, 918–927 (1997).

    Article  CAS  Google Scholar 

  39. Chow, A., Toomre, D., Garrett, W. & Mellman, I. Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature 418, 988–994 (2002).

    Article  CAS  Google Scholar 

  40. Abrami, L., Lindsay, M., Parton, R.G., Leppla, S.H. & van der Goot, F.G. Membrane insertion of anthrax protective antigen and cytoplasmic delivery of lethal factor occur at different stages of the endocytic pathway. J. Cell Biol. 166, 645–651 (2004).

    Article  CAS  Google Scholar 

  41. Odorizzi, G., Katzmann, D.J., Babst, M., Audhya, A. & Emr, S.D. Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae. J. Cell Sci. 116, 1893–1903 (2003).

    Article  CAS  Google Scholar 

  42. Peter, B.J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004).

    Article  CAS  Google Scholar 

  43. Habermann, B. The BAR-domain family of proteins: a case of bending and binding? EMBO Rep. 5, 250–255 (2004).

    Article  CAS  Google Scholar 

  44. Kobayashi, T. et al. Separation and characterization of late endosomal membrane domains. J. Biol. Chem. 277, 32157–32164 (2002).

    Article  CAS  Google Scholar 

  45. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  46. Clague, M.J., Urbe, S., Aniento, F. & Gruenberg, J. Vacuolar ATPase activity is required for endosomal carrier vesicle formation. J. Biol. Chem. 269, 21–24 (1994).

    CAS  PubMed  Google Scholar 

  47. Piguet, V. et al. Nef-induced CD4 degradation: a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of β-COP in endosomes. Cell 97, 63–73 (1999).

    Article  CAS  Google Scholar 

  48. Demaurex, N., Furuya, W., D'Souza, S., Bonifacino, J.S. & Grinstein, S. Mechanism of acidification of the trans-Golgi network (TGN). In situ measurements of pH using retrieval of TGN38 and furin from the cell surface. J. Biol. Chem. 273, 2044–2051 (1998).

    Article  CAS  Google Scholar 

  49. Huber, L.A. et al. Both calmodulin and the unconventional myosin Myr4 regulate membrane trafficking along the recycling pathway of MDCK cells. Traffic 1, 494–503 (2000).

    Article  CAS  Google Scholar 

  50. Parton, R.G., Schrotz, P., Bucci, C. & Gruenberg, J. Plasticity of early endosomes. J. Cell Sci. 103, 335–348 (1992).

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank B. Viaccoz, M.-C. Velluz and M.-H. Beuchat for expert technical assistance, and U. Laemmli and C. Bauer (Bioimaging platform, Frontiers in Genetics NCCR, Geneva) for help with light microscopy and imaging. We are grateful to K. Miwa and D. Trono for providing us with concanamycin B and HIV-1-derived vector pseudotyped with VSV-G, respectively. We also wish to thank G. van der Goot and M. Fivaz for critical reading of the manuscript. This work was supported by the Swiss National Science Foundation (J.G.), the International Human Frontier Science Program (J.G and R.G.P.), and the Australian National Health and Medical Research Council (R.G.P.). I.L.B. was supported by the award of the Bettencourt Foundation price (Prix des Jeunes Chercheurs), by the French Cancer Research Association (ARC) and by the Roche Foundation. V.P. was supported by the Roche Foundation and EMBO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gruenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1 - S4, supplementary methods and movie legends (PDF 682 kb)

Supplementary Movie 1 (MOV 2444 kb)

Supplementary Movie 2 (MOV 2444 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Blanc, I., Luyet, PP., Pons, V. et al. Endosome-to-cytosol transport of viral nucleocapsids. Nat Cell Biol 7, 653–664 (2005). https://doi.org/10.1038/ncb1269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1269

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing