Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia

Abstract

Formins have important roles in the nucleation of actin and the formation of linear actin filaments, but their role in filopodium formation has remained elusive. Dictyostelium discoideum Diaphanous-related formin dDia2 is enriched at the tips of filopodia and interacts with profilin II and Rac1. An FH1FH2 fragment of dDia2 nucleated actin polymerization and removed capping protein from capped filament ends. Genetic studies showed that dDia2 is important for cell migration as well as the formation, elongation and maintenance of filopodia. Here we provide evidence that dDia2 specifically controls filopodial dynamics by regulating actin turnover at the barbed ends of actin filaments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain organization of dDia2, interaction with regulatory proteins and generation of dDia2 mutants.
Figure 2: Interaction of the FH1FH2 construct with actin.
Figure 3: dDia2 localizes to filopodial tips and is required for the formation of filopodia.
Figure 4: Motility and RICM analysis.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

GenBank/EMBL/DDBJ

References

  1. Evangelista, M., Zigmond, S. & Boone, C. Formins: signaling effectors for assembly and polarization of actin filaments. J. Cell Sci. 116, 2603–2611 (2003).

    Article  CAS  Google Scholar 

  2. Wallar, B. J. & Alberts, A. S. The formins: active scaffolds that remodel the cytoskeleton. Trends Cell Biol. 13, 435–446 (2003).

    Article  CAS  Google Scholar 

  3. Zigmond, S. H. Formin-induced nucleation of actin filaments. Curr. Opin. Cell Biol. 16, 99–105 (2004).

    Article  CAS  Google Scholar 

  4. Petersen, J., Nielsen, O., Egel, R. & Hagan, I. M. FH3, a domain found in formins, targets the fission yeast formin Fus1 to the projection tip during conjugation. J. Cell Biol. 141, 1217–1228 (1998).

    Article  CAS  Google Scholar 

  5. Alberts, A. S. Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J. Biol. Chem. 276, 2824–2830 (2001).

    Article  CAS  Google Scholar 

  6. Shimada, A. et al. The core FH2 domain of diaphanous-related formins is an elongated actin binding protein that inhibits polymerization. Mol. Cell 13, 511–522 (2004).

    Article  CAS  Google Scholar 

  7. Xu, Y. et al. Crystal structures of a formin homology-2 domain reveal a tethered dimer architecture. Cell 116, 711–723 (2004).

    Article  CAS  Google Scholar 

  8. Evangelista, et al. Bni1p, a yeast formin linking cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276, 118–122 (1997).

    Article  CAS  Google Scholar 

  9. Watanabe, N. et al. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16, 3044–3056 (1997).

    Article  CAS  Google Scholar 

  10. Chan, D. C., Bedford, M. T. & Leder, P. Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains. EMBO J. 15, 1045–1054 (1996).

    Article  CAS  Google Scholar 

  11. Sagot, I., Rodal, A. A., Moseley, J., Goode, B. L. & Pellman, D. An actin nucleation mechanism mediated by Bni1 and profilin. Nature Cell Biol. 4, 626–631 (2002).

    Article  CAS  Google Scholar 

  12. Kovar, D. R., Kuhn, J. R., Tichy, A. L. & Pollard, T. D. The fission yeast cytokinesis formin Cdc12p is a barbed end actin filament capping protein gated by profilin. J. Cell Biol. 161, 875–887 (2003).

    Article  CAS  Google Scholar 

  13. Evangelista, M., Pruyne, D., Amberg, D. C., Boone, C. & Bretscher, A. Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nature Cell Biol. 4, 32–41 (2002).

    Article  CAS  Google Scholar 

  14. Peng, J., Wallar, B. J., Flanders, A., Swiatek, P. J. & Alberts, A. S. Disruption of the Diaphanous-related formin Drf1 gene encoding mDia1 reveals a role for Drf3 as an effector for Cdc42. Curr. Biol. 13, 534–545 (2003).

    Article  CAS  Google Scholar 

  15. Pellegrin, S. & Mellor, H. The Rho family GTPase Rif induces filopodia through mDia2. Curr. Biol. 15, 129–133 (2005).

    Article  CAS  Google Scholar 

  16. Dai, J. & Sheetz, M. P. Membrane tether formation from blebbing cells. Biophys. J. 77, 3363–3370 (1999).

    Article  CAS  Google Scholar 

  17. Romero, S. et al. Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119, 419–429 (2004).

    Article  CAS  Google Scholar 

  18. Kovar, D. R. & Pollard, T. D. Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces. Proc. Natl Acad. Sci. USA 101, 14725–14730 (2004).

    Article  CAS  Google Scholar 

  19. Eichinger, L. et al. The genome of the social amoeba Dictyostelium discoideum. Nature 435, 43–57 (2005).

    Article  CAS  Google Scholar 

  20. Kitayama, C. & Uyeda, T. Q. ForC, a novel type of formin family protein lacking an FH1 domain, is involved in multicellular development in Dictyostelium discoideum. J. Cell Sci. 116, 711–723 (2003).

    Article  CAS  Google Scholar 

  21. Haugwitz, M., Noegel, A. A., Karakesisoglou, J. & Schleicher, M. Dictyostelium amoebae that lack G-actin-sequestering profilins show defects in F-actin content, cytokinesis, and development. Cell 79, 303–314 (1994).

    Article  CAS  Google Scholar 

  22. Rivero, F., Dislich, H., Glöckner, G. & Noegel, A. A. The Dictyostelium discoideum family of Rho-related proteins. Nucleic Acids Res. 29, 1068–1079 (2001).

    Article  CAS  Google Scholar 

  23. Faix, J. et al. Recruitment of cortexillin into the cleavage furrow is controlled by Rac1 and IQGAP-related proteins. EMBO J. 20, 3705–3715 (2001).

    Article  CAS  Google Scholar 

  24. Dumontier, M., Höcht, P., Mintert, U. & Faix, J. Rac1 GTPases control filopodia formation, cell motility, endocytosis, cytokinesis and development in Dictyostelium. J. Cell Sci. 113, 2253–2265 (2000).

    CAS  PubMed  Google Scholar 

  25. Small, J. V., Stradal, T., Vignal, E. & Rottner, K. The lamellipodium: where motility begins. Trends Cell Biol. 12, 112–120 (2002).

    Article  CAS  Google Scholar 

  26. Han, Y. H. et al. Requirement of a vasodilator-stimulated phosphoprotein family member for cell adhesion, the formation of filopodia, and chemotaxis in Dictyostelium. J. Biol. Chem. 277, 49877–49887 (2002).

    Article  CAS  Google Scholar 

  27. Svitkina, T. M. et al. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160, 409–421 (2003).

    Article  CAS  Google Scholar 

  28. Lebrand, C. et al. Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of Netrin-1. Neuron 42, 37–49 (2004).

    Article  CAS  Google Scholar 

  29. Hug, C. et al. Capping protein levels influence actin assembly and cell motility in Dictyostelium. Cell 81, 591–600 (1995).

    Article  CAS  Google Scholar 

  30. Faix, J. et al. The IQGAP-related protein DGAP1 interacts with Rac and is involved in the modulation of the F-actin cytoskeleton and control of cell motility. J. Cell Sci. 111, 3059–3071 (1998).

    CAS  PubMed  Google Scholar 

  31. Sutoh, K. A transformation vector for Dictyostelium discoideum with a new selectable marker bsr. Plasmid 2, 150–154 (1993).

    Article  Google Scholar 

  32. Hartmann, H., Noegel, A. A., Eckerskorn, C., Rapp, S. & Schleicher, M. Ca2+-independent F-actin capping proteins. J. Biol. Chem. 264, 12639–12647 (1989).

    CAS  PubMed  Google Scholar 

  33. Faix, J. & Dittrich, W. DGAP1, a homologue of rasGTPase activating proteins that controls growth, cytokinesis, and development in Dictyostelium discoideum. FEBS Lett. 394, 251–257 (1996).

    Article  CAS  Google Scholar 

  34. Weber, I. et al. Cytokinesis mediated through the recruitment of cortexillins into the cleavage furrow. EMBO J. 18, 586–594 (1999).

    Article  CAS  Google Scholar 

  35. Eichinger, L. & Schleicher, M. Characterization of actin- and lipid-binding domains in severin, a Ca2+-dependent F-actin fragmenting protein. Biochemistry 31, 4779–4787 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Segall for discussions and for reading the manuscript, W. Witke for CapG cDNA and D. Rieger and M. Borath for excellent technical assistance. This work was supported by a grant to M.S. from the Deutsche Forschungsgemeinschaft and a grant to J.F. from the Friedrich-Baur-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Faix.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schirenbeck, A., Bretschneider, T., Arasada, R. et al. The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nat Cell Biol 7, 619–625 (2005). https://doi.org/10.1038/ncb1266

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1266

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing