Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia

Abstract

Outer dense fibre 2 (Odf2; also known as cenexin) was initially identified as a main component of the sperm tail cytoskeleton, but was later shown to be a general scaffold protein that is specifically localized at the distal/subdistal appendages of mother centrioles1,2. Here we show that Odf2 expression is suppressed in mouse F9 cells when both alleles of Odf2 genes are deleted. Unexpectedly, the cell cycle of Odf2−/− cells does not seem to be affected. Immunofluorescence and ultrathin-section electron microscopy reveals that in Odf2−/− cells, distal/subdistal appendages disappear from mother centrioles, making it difficult to distinguish mother from daughter centrioles. In Odf2−/− cells, however, the formation of primary cilia is completely suppressed, although 25% of wild-type F9 cells are ciliated under the steady-state cell cycle. The loss of primary cilia in Odf2−/− F9 cells can be rescued by exogenous Odf2 expression. These findings indicate that Odf2 is indispensable for the formation of distal/subdistal appendages and the generation of primary cilia, but not for other cell-cycle-related centriolar functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell growth, cell cycle and microtubule organization of Odf2+/+ and Odf2−/− F9 cells.
Figure 2: The appendages of the mother centrioles in Odf2+/+ and Odf2−/− F9 cells.
Figure 3: Localization of centriolin in Odf2+/+ and Odf2−/− F9 cells.
Figure 4: Serial ultrathin-section electron micrographs of paired centrosomes in Odf2+/+ and Odf2−/− F9 cells.
Figure 5: Loss of primary cilia in Odf2−/− F9 cells.

Similar content being viewed by others

References

  1. Lange, B. M. & Gull, K. A molecular marker for centriole maturation in the mammalian cell cycle. J. Cell Biol. 130, 919–927 (1995).

    Article  CAS  Google Scholar 

  2. Nakagawa, Y., Yamane, Y., Okanoue, T., Tsukita, Sh. & Tsukita, Sa. Outer dense fiber 2 is a widespread centrosome scaffold component preferentially associated with mother centrioles: its identification from isolated centrosomes. Mol. Biol. Cell 12, 1687–1697 (2001).

    Article  CAS  Google Scholar 

  3. Doxsey, S. Re-evaluating centrosome function. Nature Rev. Mol. Cell Biol. 2, 688–698 (2001).

    Article  CAS  Google Scholar 

  4. Rieder, C. L., Faruki, S. & Khodjakov, A. The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol. 11, 413–419 (2001).

    Article  CAS  Google Scholar 

  5. Bornens, M. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. 14, 25–34 (2002).

    Article  CAS  Google Scholar 

  6. Kochanski, R. S. & Borisy, G. G. Mode of centriole duplication and distribution. J. Cell Biol. 110, 1599–1605 (1990).

    Article  CAS  Google Scholar 

  7. Chretien, D., Buendia, B., Fuller, S. D. & Karsenti, E. Reconstruction of the centrosome cycle from cryoelectron micrographs. J. Struct. Biol. 120, 117–133 (1997).

    Article  CAS  Google Scholar 

  8. Rieder, C. L. & Borisy, G. G. The centrosome cycle in PtK2 cells: asymmetric distribution and structural changes in the pericentriolar material. Biol. Cell 44, 117–132 (1982).

    Google Scholar 

  9. Vorobjev, I. A. & Chentsov Yu, S. Centrioles in the cell cycle. I. Epithelial cells. J. Cell Biol. 93, 938–949 (1982).

    Article  CAS  Google Scholar 

  10. Wheatley, D. N. The Centriole: A Central Enigma of Cell Biology (Elsevier Biomedical Press, Amsterdam, USA, 1982).

    Google Scholar 

  11. Paintrand, M., Moudjou, M., Delacroix, H. & Bornens, M. Centrosome organization and centriole architecture: their sensitivity to divalent cations. J. Struct. Biol. 108, 107–128 (1992).

    Article  CAS  Google Scholar 

  12. Mogensen, M. M., Malik, A., Piel, M., Bouckson-Castaing, V. & Bornens, M. Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J. Cell Sci. 113, 3013–3023 (2000).

    CAS  PubMed  Google Scholar 

  13. Chang, P., Giddings, T. H. Jr, Winey, M. & Stearns, T. ε-Tubulin is required for centriole duplication and microtubule organization. Nature Cell Biol. 5, 71–76 (2003).

    Article  CAS  Google Scholar 

  14. Gromley, A. et al. A novel human protein of the maternal centriole is required for the final stages of cytokinesis and entry into S phase. J. Cell Biol. 161, 535–545 (2003).

    Article  CAS  Google Scholar 

  15. Ou, Y. Y., Mack, G. J., Zhang, M. & Rattner, J. B. CEP110 and ninein are located in a specific domain of the centrosome associated with centrosome maturation. J. Cell Sci. 115, 1825–1835 (2002).

    CAS  PubMed  Google Scholar 

  16. Dammermann, A. & Merdes, A. Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J. Cell Biol. 159, 255–266 (2002).

    Article  CAS  Google Scholar 

  17. Sorokin, S. P. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Sci. 3, 207–230 (1968).

    CAS  PubMed  Google Scholar 

  18. Piperno, G., LeDizet, M. & Chang, X. J. Microtubules containing acetylated α-tubulin in mammalian cells in culture. J. Cell Biol. 104, 289–302 (1987).

    Article  CAS  Google Scholar 

  19. McGrath, J., Somlo, S., Makova, S., Tian, X. & Brueckner, M. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114, 61–73 (2003).

    Article  CAS  Google Scholar 

  20. Watnick, T. & Germino, G. From cilia to cyst. Nature Genet. 34, 355–356 (2003).

    Article  CAS  Google Scholar 

  21. The European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. Cell 77, 881–894 (1994).

  22. Mochizuki, T. et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272, 1339–1342 (1996).

    Article  CAS  Google Scholar 

  23. Pazour, G. J. et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene Tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151, 709–718 (2000).

    Article  CAS  Google Scholar 

  24. Hou, X. et al. Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. J. Clin. Invest. 109, 533–540 (2002).

    Article  CAS  Google Scholar 

  25. Yoder, B. K., Hou, X. & Guay-Woodford, L. M. The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J. Am. Soc. Nephrol. 13, 2508–2516 (2002).

    Article  CAS  Google Scholar 

  26. Praetorius, H. A. & Spring, K. R. Bending the MDCK cell primary cilium increases intracellular calcium. J. Membr. Biol. 184, 71–79 (2001).

    Article  CAS  Google Scholar 

  27. Nauli, S. M. & Zhou, J. Polycystins and mechanosensation in renal and nodal cilia. Bioessays 26, 844–856 (2004).

    Article  CAS  Google Scholar 

  28. Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nature Rev. Mol. Cell Biol. 3, 813–825 (2002).

    Article  CAS  Google Scholar 

  29. Nonaka, S. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829–837 (1998).

    Article  CAS  Google Scholar 

  30. Jurczyk, A. et al. Pericentrin forms a complex with intraflagellar transport proteins and polycystin-2 and is required for primary cilia assembly. J. Cell Biol. 166, 637–643 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the members of our laboratory for helpful discussions. We are also grateful to N. Minato and Y. Hamazaki for help with FACS analysis. This work was supported in part by a Grant-in-Aid for Scientific Research (B) to Sa.T. from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachiko Tsukita.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, H., Kubo, A., Tsukita, S. et al. Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nat Cell Biol 7, 517–524 (2005). https://doi.org/10.1038/ncb1251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing