Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functionally distinct kinesin-13 family members cooperate to regulate microtubule dynamics during interphase

Abstract

Regulation of microtubule polymerization and depolymerization is required for proper cell development. Here, we report that two proteins of the Drosophila melanogaster kinesin-13 family, KLP10A and KLP59C, cooperate to drive microtubule depolymerization in interphase cells. Analyses of microtubule dynamics in S2 cells depleted of these proteins indicate that both proteins stimulate depolymerization, but alter distinct parameters of dynamic instability; KLP10A stimulates catastrophe (a switch from growth to shrinkage) whereas KLP59C suppresses rescue (a switch from shrinkage to growth). Moreover, immunofluorescence and live analyses of cells expressing tagged kinesins reveal that KLP10A and KLP59C target to polymerizing and depolymerizing microtubule plus ends, respectively. Our data also suggest that KLP10A is deposited on microtubules by the plus-end tracking protein, EB1. Our findings support a model in which these two members of the kinesin-13 family divide the labour of microtubule depolymerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Drosophila kinesin-13 proteins affect different parameters of microtubule dynamic instability in interphase S2 cells.
Figure 2: KLP10A and KLP59C localize to microtubule plus ends in interphase S2 cells.
Figure 3: KLP10A moves towards the cell cortex whereas KLP59C moves towards the cell interior.
Figure 4: KLP10A trails the +TIP protein EB1 on most microtubule plus ends.
Figure 5: EB1 is required for proper KLP10A localization at microtubule plus ends.
Figure 6: EB1 binds KLP10A in vitro.
Figure 7: Model for interphase kinesin-13 function.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Howard, J. & Hyman, A.A. Dynamics and mechanics of the microtubule plus end. Nature 422, 753–758 (2003).

    Article  CAS  Google Scholar 

  2. Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237–242 (1984).

    Article  CAS  Google Scholar 

  3. Cassimeris, L. & Spittle, C. Regulation of microtubule-associated proteins. Int. Rev. Cytol. 210, 163–226 (2001).

    Article  CAS  Google Scholar 

  4. Belmont, L.D., Hyman, A.A., Sawin, K.E. & Mitchison, T.J. Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell 62, 579–589 (1990).

    Article  CAS  Google Scholar 

  5. Small, J.V. & Kaverina, I. Microtubules meet substrate adhesions to arrange cell polarity. Curr. Opin. Cell Biol. 15, 40–47 (2003).

    Article  CAS  Google Scholar 

  6. Krylyshkina, O. et al. Nanometer targeting of microtubules to focal adhesions. J. Cell Biol. 161, 853–859 (2003).

    Article  CAS  Google Scholar 

  7. Wittmann, T., Bokoch, G.M. & Waterman-Storer, C.M. Regulation of leading edge microtubule and actin dynamics downstream of Rac1. J. Cell Biol. 161, 845–851 (2003).

    Article  CAS  Google Scholar 

  8. Lawrence, C.J. et al. A standardized kinesin nomenclature. J. Cell Biol. 167, 19–22 (2004).

    Article  CAS  Google Scholar 

  9. Vale, R.D. & Fletterick, R.J. The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol. 13, 745–777 (1997).

    Article  CAS  Google Scholar 

  10. Desai, A., Verma, S., Mitchison, T.J. & Walczak, C.E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).

    Article  CAS  Google Scholar 

  11. Walczak, C.E., Mitchison, T.J. & Desai, A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84, 37–47 (1996).

    Article  CAS  Google Scholar 

  12. Rogers, G.C. et al. Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427, 364–370 (2004).

    Article  CAS  Google Scholar 

  13. Kline-Smith, S.L., Khodjakov, A., Hergert, P. & Walczak, C.E. Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Mol. Biol. Cell 15, 1146–1159 (2004).

    Article  CAS  Google Scholar 

  14. Kline-Smith, S.L. & Walczak, C.E. The microtubule-destabilizing kinesin XKCM1 regulates microtubule dynamic instability in cells. Mol. Biol. Cell 13, 2718–2731 (2002).

    Article  CAS  Google Scholar 

  15. Homma, N. et al. Kinesin superfamily protein 2A (KIF2A) functions in suppression of collateral branch extension. Cell 114, 229–239 (2003).

    Article  CAS  Google Scholar 

  16. Holmfeldt, P., Stenmark, S. & Gullberg, M. Differential functional interplay of TOGp/XMAP215 and the KinI kinesin MCAK during interphase and mitosis. EMBO J. 23, 627–637 (2004).

    Article  CAS  Google Scholar 

  17. Tournebize, R. et al. Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nature Cell Biol. 2, 13–19 (2000).

    Article  CAS  Google Scholar 

  18. Kinoshita, K., Arnal, I., Desai, A., Drechsel, D.N. & Hyman, A.A. Reconstitution of physiological microtubule dynamics using purified components. Science 294, 1340–1343 (2001).

    Article  CAS  Google Scholar 

  19. Gandhi, R. et al. The Drosophila kinesin-like protein KLP67A is essential for mitotic and male meiotic spindle assembly. Mol. Biol. Cell 15, 121–131 (2003).

    Article  Google Scholar 

  20. Miller, R.K. et al. The kinesin-related proteins, Kip2p and Kip3p, function differently in nuclear migration in yeast. Mol. Biol. Cell 9, 2051–2068 (1998).

    Article  CAS  Google Scholar 

  21. Rogers, S.L., Rogers, G.C., Sharp, D.J. & Vale, R.D. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 158, 873–884 (2002).

    Article  CAS  Google Scholar 

  22. Tran, P.T., Walker, R.A. & Salmon, E.D. A metastable intermediate state of microtubule dynamic instability that differs significantly between plus and minus ends. J. Cell Biol. 138, 105–117 (1997).

    Article  CAS  Google Scholar 

  23. Galjart, N. & Perez, F. A plus-end raft to control microtubule dynamics and function. Curr. Opin. Cell Biol. 15, 48–53 (2003).

    Article  CAS  Google Scholar 

  24. Carvalho, P., Tirnauer, J.S. & Pellman, D. Surfing on microtubule ends. Trends Cell Biol. 13, 229–237 (2003).

    Article  CAS  Google Scholar 

  25. Tirnauer, J.S., O'Toole, E., Berrueta, L., Bierer, B.E. & Pellman, D. Yeast Bim1p promotes the G1-specific dynamics of microtubules. J. Cell Biol. 145, 993–1007 (1999).

    Article  CAS  Google Scholar 

  26. Rogers, S.L., Wiedemann, U., Hacker, U., Turck, C. & Vale, R.D. Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner. Curr. Biol. 14, 1827–1833 (2004).

    Article  CAS  Google Scholar 

  27. Su, L.K. et al. APC binds to the novel protein EB1. Cancer Res. 55, 2972–2977 (1995).

    CAS  PubMed  Google Scholar 

  28. Moores, C.A. et al. A mechanism for microtubule depolymerization by KinI kinesins. Mol. Cell 9, 903–909 (2002).

    Article  CAS  Google Scholar 

  29. Newton, C.N., Wagenbach, M., Ovechkina, Y., Wordeman, L. & Wilson, L. MCAK, a Kin I kinesin, increases the catastrophe frequency of steady-state HeLa cell microtubules in an ATP-dependent manner in vitro. FEBS Lett. 572, 80–84 (2004).

    Article  CAS  Google Scholar 

  30. Ovechkina, Y., Wagenbach, M. & Wordeman, L. K-loop insertion restores microtubule depolymerizing activity of a “neckless” MCAK mutant. J. Cell Biol. 159, 557–562 (2002).

    Article  CAS  Google Scholar 

  31. Tirnauer, J.S., Grego, S., Salmon, E.D. & Mitchison, T.J. EB1-microtubule interactions in Xenopus egg extracts: role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules. Mol. Biol. Cell 13, 3614–3626 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Browning, H., Hackney, D.D. & Nurse, P. Targeted movement of cell end factors in fission yeast. Nature Cell Biol. 5, 812–818 (2003).

    Article  CAS  Google Scholar 

  33. Carvalho, P., Gupta, M.L. Jr, Hoyt, M.A. & Pellman, D. Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev. Cell 6, 815–829 (2004).

    Article  CAS  Google Scholar 

  34. Busch, K.E., Hayles, J., Nurse, P. & Brunner, D. Tea2p kinesin is involved in spatial microtubule organization by transporting tip1p on microtubules. Dev. Cell 6, 831–843 (2004).

    Article  CAS  Google Scholar 

  35. Hunter, A.W. et al. The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol. Cell 11, 445–457 (2003).

    Article  CAS  Google Scholar 

  36. Gaetz, J. & Kapoor, T.M. Dynein/dynactin regulate metaphase spindle length by targeting depolymerizing activities to spindle poles. J. Cell Biol. 166, 465–471 (2004).

    Article  CAS  Google Scholar 

  37. Andrews, P.D. et al. Aurora B regulates MCAK at the mitotic centromere. Dev. Cell 6, 253–268 (2004).

    Article  CAS  Google Scholar 

  38. Lan, W. et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr. Biol. 14, 273–286 (2004).

    Article  CAS  Google Scholar 

  39. Ohi, R., Coughlin, M.L., Lane, W.S. & Mitchison, T.J. An inner centromere protein that stimulates the microtubule depolymerizing activity of a KinI kinesin. Dev. Cell 5, 309–321 (2003).

    Article  CAS  Google Scholar 

  40. Ohi, R., Sapra, T., Howard, J. & Mitchison, T.J. Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol. Biol. Cell 15, 2895–2906 (2004).

    Article  CAS  Google Scholar 

  41. Kaverina, I., Rottner, K. & Small, J.V. Targeting, capture, and stabilization of microtubules at early focal adhesions. J. Cell Biol. 142, 181–190 (1998).

    Article  CAS  Google Scholar 

  42. Wittmann, T., Bokoch, G.M. & Waterman-Storer, C.M. Regulation of microtubule destabilizing activity of Op18/stathmin downstream of Rac1. J. Biol. Chem. 279, 6196–6203 (2004).

    Article  CAS  Google Scholar 

  43. Komarova, Y.A., Akhmanova, A.S., Kojima, S., Galjart, N. & Borisy, G.G. Cytoplasmic linker proteins promote microtubule rescue in vivo. J. Cell Biol. 159, 589–599 (2002).

    Article  CAS  Google Scholar 

  44. Lantz, V.A. & Miller, K.G. A class VI unconventional myosin is associated with a homologue of a microtubule-binding protein, cytoplasmic linker protein-170, in neurons and at the posterior pole of Drosophila embryos. J. Cell Biol. 140, 897–910 (1998).

    Article  CAS  Google Scholar 

  45. Miki, H., Setou, M., Kaneshiro, K. & Hirokawa, N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc. Natl Acad. Sci. USA 98, 7004–7011 (2001).

    Article  CAS  Google Scholar 

  46. Clemens, J.C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl Acad. Sci. USA 97, 6499–6503 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Sampaio and C. Sunkel (Porto, Portugal) for the anti-Mast antibody, E. Ghersi and L. D'adamio (AECOM) for advice on in vitro binding assays, M. Cammer of the AECOM analytical imaging facility for advice on image acquisition and analysis, and H. Sosa (AECOM) for helpful comments on the manuscript. We also thank R. Tsien (UCSD) for providing the mRFP construct, and K. Slep (UCSF) for the APC and some EB1 constructs. This work was supported by grants from the NIH to D.J.S. and R.D.V. V.M. is a Fulbright Fellow and D.J.S. is a Scholar of the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Sharp.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mennella, V., Rogers, G., Rogers, S. et al. Functionally distinct kinesin-13 family members cooperate to regulate microtubule dynamics during interphase. Nat Cell Biol 7, 235–245 (2005). https://doi.org/10.1038/ncb1222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing