Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Maintenance of the diacylglycerol level in the Golgi apparatus by the Nir2 protein is critical for Golgi secretory function

A Corrigendum to this article was published on 01 April 2005

Abstract

The level of diacylglycerol (DAG) in the Golgi apparatus is crucial for protein transport to the plasma membrane. Studies in budding yeast indicate that Sec14p, a phosphatidylinositol (PI)-transfer protein, is involved in regulating DAG homeostasis in the Golgi complex. Here, we show that Nir2, a peripheral Golgi protein containing a PI-transfer domain, is essential for maintaining the structural and functional integrity of the Golgi apparatus in mammalian cells. Depletion of Nir2 by RNAi leads to substantial inhibition of protein transport from the trans-Golgi network to the plasma membrane, and causes a reduction in the DAG level in the Golgi apparatus. Remarkably, inactivation of the cytidine 5′-diphosphate (CDP)-choline pathway for phosphatidylcholine biosynthesis restores both effects. These results indicate that Nir2 is involved in maintaining a critical DAG pool in the Golgi apparatus by regulating its consumption via the CDP-choline pathway, demonstrating the interface between secretion from the Golgi and lipid homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Depletion of Nir2 by RNAi affects the Golgi architecture.
Figure 2: Depletion of Nir2 attenuates protein transport to the plasma membrane.
Figure 3: Inhibition of protein transport from the TGN to the plasma membrane in Nir2-depleted cells.
Figure 4: Depletion of Nir2 reduces the DAG level in the Golgi apparatus.
Figure 5: The PI-transfer domain is required for Nir2 function in the Golgi.
Figure 6: The ability to produce DAG from ceramide and PC is not affected by Nir2 depletion.
Figure 7: Nir2 regulates the consumption of DAG in the Golgi via the CDP-choline pathway for PC biosynthesis.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Farquhar, M.G. & Palade, G.E. The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol. 8, 2–10 (1998).

    Article  CAS  Google Scholar 

  2. Donaldson, J.G. & Lippincott-Schwartz, J. Sorting and signaling at the Golgi complex. Cell 101, 693–696 (2000).

    Article  CAS  Google Scholar 

  3. Mollenhauer, H.H. & Morre, D.J. Perspectives on Golgi apparatus form and function. J. Electron Microsc. Tech. 17, 2–14 (1991).

    Article  CAS  Google Scholar 

  4. Rothman, J.E. The protein machinery of vesicle budding and fusion. Protein Sci. 5, 185–194 (1996).

    Article  CAS  Google Scholar 

  5. Warren, G. & Malhotra, V. The organisation of the Golgi apparatus. Curr. Opin. Cell Biol. 10, 493–498 (1998).

    Article  CAS  Google Scholar 

  6. Bankaitis, V.A., Malehorn, D.E., Emr, S.D. & Greene, R. The Saccharomyces cerevisiae SEC14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex. J. Cell Biol. 108, 1271–1281 (1989).

    Article  CAS  Google Scholar 

  7. Cockcroft, S. Phosphatidylinositol transfer proteins: a requirement in signal transduction and vesicle traffic. Bioessays 20, 423–432 (1998).

    Article  CAS  Google Scholar 

  8. Wirtz, K.W. Phospholipid transfer proteins revisited. Biochem. J. 324, 353–560 (1997).

    Article  CAS  Google Scholar 

  9. McMaster, C.R. Lipid metabolism and vesicle trafficking: more than just greasing the transport machinery. Biochem. Cell Biol. 79, 681–692 (2001).

    Article  CAS  Google Scholar 

  10. Roth, M.G. Lipid regulators of membrane traffic through the Golgi complex. Trends Cell Biol. 9, 174–179 (1999).

    Article  CAS  Google Scholar 

  11. Huijbregts, R.P., Topalof, L. & Bankaitis, V.A. Lipid metabolism and regulation of membrane trafficking. Traffic 1, 195–202 (2000).

    Article  CAS  Google Scholar 

  12. Wang, Y.J. et al. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114, 299–310 (2003).

    Article  CAS  Google Scholar 

  13. Weigert, R. et al. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 402, 429–433 (1999).

    Article  CAS  Google Scholar 

  14. Godi, A. et al. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nature Cell Biol. 6, 393–404 (2004).

    Article  CAS  Google Scholar 

  15. Simon, J.P. et al. An essential role for the phosphatidylinositol transfer protein in the scission of coatomer-coated vesicles from the trans-Golgi network. Proc. Natl Acad. Sci. USA 95, 11181–11186 (1998).

    Article  CAS  Google Scholar 

  16. Corda, D., Hidalgo Carcedo, C., Bonazzi, M., Luini, A. & Spano, S. Molecular aspects of membrane fission in the secretory pathway. Cell Mol. Life Sci. 59, 1819–1832 (2002).

    Article  CAS  Google Scholar 

  17. Baron, C.L. & Malhotra, V. Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science 295, 325–328 (2002).

    Article  CAS  Google Scholar 

  18. Chernomordik, L., Kozlov, M.M. & Zimmerberg, J. Lipids in biological membrane fusion. J. Membr. Biol. 146, 1–14 (1995).

    Article  CAS  Google Scholar 

  19. Shemesh, T., Luini, A., Malhotra, V., Burger, K.N. & Kozlov, M.M. Prefission constriction of Golgi tubular carriers driven by local lipid metabolism: a theoretical model. Biophys. J. 85, 3813–3827 (2003).

    Article  CAS  Google Scholar 

  20. Bankaitis, V.A. Cell biology. Slick recruitment to the Golgi. Science 295, 290–291 (2002).

    Article  CAS  Google Scholar 

  21. Pagano, R.E. What is the fate of diacylglycerol produced at the Golgi apparatus? Trends Biochem. Sci. 13, 202–205 (1988).

    Article  CAS  Google Scholar 

  22. Lev, S. The role of the Nir/rdgB protein family in membrane transport and cytoskeleton remodeling. Exp. Cell Res. 297, 1–10 (2004).

    Article  CAS  Google Scholar 

  23. Vihtelic, T.S., Goebl, M., Milligan, S., O'Tousa, J.E. & Hyde, D.R. Localization of Drosophila retinal degeneration B, a membrane-associated phosphatidylinositol transfer protein. J. Cell Biol. 122, 1013–1022 (1993).

    Article  CAS  Google Scholar 

  24. Lev, S. et al. Identification of a novel family of targets of PYK2 related to Drosophila retinal degeneration B (rdgB) protein. Mol. Cell. Biol. 19, 2278–2288 (1999).

    Article  CAS  Google Scholar 

  25. Litvak, V. et al. Targeting of Nir2 to lipid droplets is regulated by a specific threonine residue within its PI-transfer domain. Curr. Biol. 12, 1513–1518 (2002).

    Article  CAS  Google Scholar 

  26. Litvak, V. et al. Mitotic phosphorylation of the peripheral Golgi protein Nir2 by Cdk1 provides a docking mechanism for Plk1 and affects cytokinesis completion. Mol. Cell 14, 319–330 (2004).

    Article  CAS  Google Scholar 

  27. Litvak, V., Tian, D., Carmon, S. & Lev, S. Nir2, a human homolog of Drosophila melanogaster retinal degeneration B protein, is essential for cytokinesis. Mol. Cell. Biol. 22, 5064–5075 (2002).

    Article  CAS  Google Scholar 

  28. Griffiths, G., Pfeiffer, S., Simons, K. & Matlin, K. Exit of newly synthesized membrane proteins from the trans cisterna of the Golgi complex to the plasma membrane. J. Cell Biol. 101, 949–964 (1985).

    Article  CAS  Google Scholar 

  29. Balch, W.E. & Keller, D.S. ATP-coupled transport of vesicular stomatitis virus G protein. Functional boundaries of secretory compartments. J. Biol. Chem. 261, 14690–14696 (1986).

    CAS  PubMed  Google Scholar 

  30. Liljedahl, M. et al. Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell 104, 409–420 (2001).

    Article  CAS  Google Scholar 

  31. Randazzo, P.A. & Kahn, R.A. Myristoylation and ADP-ribosylation factor function. Methods Enzymol. 250, 394–405 (1995).

    Article  CAS  Google Scholar 

  32. Jamora, C. et al. Gbetagamma-mediated regulation of Golgi organization is through the direct activation of protein kinase D. Cell 98, 59–68 (1999).

    Article  CAS  Google Scholar 

  33. Wang, E., Norred, W.P., Bacon, C.W., Riley, R.T. & Merrill, A.H. Jr. Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J. Biol. Chem. 266, 14486–14490 (1991).

    CAS  PubMed  Google Scholar 

  34. Merrill, A.H. Jr., van Echten, G., Wang, E. & Sandhoff, K. Fumonisin B1 inhibits sphingosine (sphinganine) N-acyltransferase and de novo sphingolipid biosynthesis in cultured neurons in situ. J. Biol. Chem. 268, 27299–27306 (1993).

    CAS  PubMed  Google Scholar 

  35. Levine, T.P. & Munro, S. Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-kinase-dependent and -independent components. Curr. Biol. 12, 695–704 (2002).

    Article  CAS  Google Scholar 

  36. Riebeling, C., Allegood, J.C., Wang, E., Merrill, A.H. Jr. & Futerman, A.H. Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J. Biol. Chem. 278, 43452–43459 (2003).

    Article  CAS  Google Scholar 

  37. Ichikawa, S. & Hirabayashi, Y. Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol. 8, 198–202 (1998).

    Article  CAS  Google Scholar 

  38. Lipsky, N.G. & Pagano, R.E. Sphingolipid metabolism in cultured fibroblasts: microscopic and biochemical studies employing a fluorescent ceramide analogue. Proc. Natl Acad. Sci. USA 80, 2608–2612 (1983).

    Article  CAS  Google Scholar 

  39. Henneberry, A.L., Lagace, T.A., Ridgway, N.D. & McMaster, C.R. Phosphatidylcholine synthesis influences the diacylglycerol homeostasis required for SEC14p-dependent Golgi function and cell growth. Mol. Biol. Cell 12, 511–520 (2001).

    Article  CAS  Google Scholar 

  40. Henneberry, A.L., Wright, M.M. & McMaster, C.R. The major sites of cellular phospholipid synthesis and molecular determinants of fatty acid and lipid head group specificity. Mol. Biol. Cell 13, 3148–3161 (2002).

    Article  CAS  Google Scholar 

  41. Boggs, K.P., Rock, C.O. & Jackowski, S. Lysophosphatidylcholine and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine inhibit the CDP-choline pathway of phosphatidylcholine synthesis at the CTP:phosphocholine cytidylyltransferase step. J. Biol. Chem. 270, 7757–7764 (1995).

    Article  CAS  Google Scholar 

  42. McGee, T.P., Skinner, H.B., Whitters, E.A., Henry, S.A. & Bankaitis, V.A. A phosphatidylinositol transfer protein controls the phosphatidylcholine content of yeast Golgi membranes. J. Cell Biol. 124, 273–287 (1994).

    Article  CAS  Google Scholar 

  43. Skinner, H.B. et al. The Saccharomyces cerevisiae phosphatidylinositol-transfer protein effects a ligand-dependent inhibition of choline-phosphate cytidylyltransferase activity. Proc. Natl Acad. Sci. USA 92, 112–116 (1995).

    Article  CAS  Google Scholar 

  44. Kearns, B.G., Alb, J.G. Jr. & Bankaitis, V. Phosphatidylinositol transfer proteins: the long and winding road to physiological function. Trends Cell Biol. 8, 276–282 (1998).

    Article  CAS  Google Scholar 

  45. Cleves, A.E. et al. Mutations in the CDP-choline pathway for phospholipid biosynthesis bypass the requirement for an essential phospholipid transfer protein. Cell 64, 789–800 (1991).

    Article  CAS  Google Scholar 

  46. Kearns, B.G. et al. Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature 387, 101–105 (1997).

    Article  CAS  Google Scholar 

  47. Allen-Baume, V., Segui, B. & Cockcroft, S. Current thoughts on the phosphatidylinositol transfer protein family. FEBS Lett. 531, 74–80 (2002).

    Article  CAS  Google Scholar 

  48. van Tiel, C.M., Schouten, A., Snoek, G.T., Gros, P. & Wirtz, K.W. The structure of phosphatidylinositol transfer protein alpha reveals sites for phospholipid binding and membrane association with major implications for its function. FEBS Lett. 531, 69–73 (2002).

    Article  CAS  Google Scholar 

  49. Buccione, R. et al. Regulation of constitutive exocytic transport by membrane receptors. A biochemical and morphometric study. J. Biol. Chem. 271, 3523–3533 (1996).

    Article  CAS  Google Scholar 

  50. Bligh, E.G. & Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Med. Sci. 37, 911–917 (1959).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Z. Elazar, M. Liscovitch and A. Futerman for stimulating discussions. We also thank members of the Futerman laboratory (S. Boldin, Y. Kacher and M. Jmoudiak) for assistance in lipid analysis. Finally, we thank C. Brodie for the GFP–PKD construct. S. L. is an incumbent of the Helena Rubinstein Career Development Chair. This work was supported by the Israel Science Foundation (No. 1073/03), the Israel Cancer Research Foundation, and by the Harry and Jeanette Weinberg Fund for the Molecular Genetics of Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sima Lev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary figures S1, S2, S3, S4 and supplementary methods plus movie legends (PDF 301 kb)

Supplementary information

Movie S1 (MOV 2702 kb)

Supplementary information

Movie S2 (MOV 2350 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litvak, V., Dahan, N., Ramachandran, S. et al. Maintenance of the diacylglycerol level in the Golgi apparatus by the Nir2 protein is critical for Golgi secretory function. Nat Cell Biol 7, 225–234 (2005). https://doi.org/10.1038/ncb1221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing