Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

TRPC1 forms the stretch-activated cation channel in vertebrate cells

Abstract

The mechanosensitive cation channel (MscCa) transduces membrane stretch into cation (Na+, K+, Ca2+ and Mg2+) flux across the cell membrane, and is implicated in cell-volume regulation1, cell locomotion2, muscle dystrophy3 and cardiac arrhythmias4. However, the membrane protein(s) that form the MscCa in vertebrates remain unknown. Here, we use an identification strategy that is based on detergent solubilization of frog oocyte membrane proteins, followed by liposome reconstitution and evaluation by patch-clamp5. The oocyte was chosen because it expresses the prototypical MscCa (≥107MscCa/oocyte)6 that is preserved in cytoskeleton-deficient membrane vesicles7. We identified a membrane-protein fraction that reconstituted high MscCa activity and showed an abundance of a protein that had a relative molecular mass of 80,000 (Mr 80K). This protein was identified, by immunological techniques, as the canonical transient receptor potential channel 1 (TRPC1)8,9,10. Heterologous expression of the human TRPC1 resulted in a >1,000% increase in MscCa patch density, whereas injection of a TRPC1-specific antisense RNA abolished endogenous MscCa activity. Transfection of human TRPC1 into CHO-K1 cells also significantly increased MscCa expression. These observations indicate that TRPC1 is a component of the vertebrate MscCa, which is gated by tension developed in the lipid bilayer, as is the case in various prokaryotic mechanosensitive (Ms) channels11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanosensitive channel (MscCa) activity is preserved after protein detergent solubilization and liposome reconstitution of frog oocyte membrane.
Figure 2: Stretch-activated multi-channel and single-channel currents measured in cell-attached patches from control (a, b) and human TRPC1-expressing (c,d) oocytes at different patch potentials.
Figure 3: Mechanosensitive channel (MscCa) activity in control and human TRPC1 mRNA-injected oocytes and the effects of human TRPC antisense RNA on native MscCa activity.
Figure 4: Transfection of CHO-K1 cells with human TRPC1 results in increased mechanosensitive channel (MscCa) activity.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Christensen, O. Mediation of cell volume regulation by Ca2+ influx through stretch-activated channels. Nature 330, 66–68 (1987).

    Article  CAS  Google Scholar 

  2. Lee, J., Ishihara, A., Oxford, G., Johnson, B. & Jacobson, K. Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 400, 382–386 (1999).

    Article  CAS  Google Scholar 

  3. Obregón-Franco, A. & Lansman, J. B. Changes in mechanosensitive channel gating following mechanical stimulation in skeletal muscle myotubes from the mdx mouse. J. Physiol. 539, 391–407 (2002).

    Article  Google Scholar 

  4. Bode, F., Sachs, F. & Franz, M. R. Tarantula peptide inhibits atrial fibrillation. Nature 409, 35–36 (2001).

    Article  CAS  Google Scholar 

  5. Sukharev, S. I., Martinac, B., Arshavsky, V. Y. & Kung, C. Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys. J. 65, 177–183 (1993).

    Article  CAS  Google Scholar 

  6. Zhang, Y. & Hamill, O. P. Calcium-, voltage- and osmotic-stress sensitive currents in Xenopus oocytes and their relationship to single mechanically-gated channels. J. Physiol. 523, 83–99 (2000).

    Article  CAS  Google Scholar 

  7. Zhang, Y., Gao, F., Popov, V. L., Wen, J. W. & Hamill, O. P. Mechanically- gated channel activity in cytoskeleton-deficient plasma membrane blebs and vesicles from Xenopus oocytes. J. Physiol. 523, 117–130 (2000).

    Article  CAS  Google Scholar 

  8. Wes, P. D. et al. TRPC1, a human homolog of a Drosophila store operated channel. Proc. Natl Acad. Sci. USA 92, 9652–9656 (1995).

    Article  CAS  Google Scholar 

  9. Bobanovic, L. K. et al. Molecular cloning and immunolocalization of a novel vertebrate TRP homologue from Xenopus. Biochemistry 340, 593–599 (1999).

    Article  CAS  Google Scholar 

  10. Brereton, H. M., Harland, M. L., Auld, A. M. & Barritt, G. J. Evidence that the TRP-1 protein is unlikely to account for store-operated Ca2+ inflow in Xenopus laevis oocytes. Mol. Cell. Biochem. 214, 63–74 (2000).

    Article  CAS  Google Scholar 

  11. Martinac, B. & Kloda, A. Evolutionary origins of mechanosensitive ion channels. Prog. Biophys. Mol. Biol. 82, 11–24 (2003).

    Article  CAS  Google Scholar 

  12. Taglietti, V. & Toselli, M. A study of stretch-activated channels in the membrane of frog oocytes: interactions with Ca2+ ions. J. Physiol. 407, 311–328 (1988).

    Article  CAS  Google Scholar 

  13. Yang, X. C. & Sachs, F. Characterization of stretch-activated ion channels in Xenopus oocytes. J. Physiol. 431, 103–122 (1990).

    Article  CAS  Google Scholar 

  14. Wu, G., McBride, D. W. & Hamill, O. P. Mg2+ block and inward rectification of mechanosensitive channel in Xenopus oocytes. Pflügers Achiv. 435, 572–574 (1998).

    Article  CAS  Google Scholar 

  15. Minke, B. & Cook, B. TRP channel proteins and signal transduction. Physiol. Rev. 82, 429–472 (2002).

    Article  CAS  Google Scholar 

  16. Wilkinson, N. C., Gao, F. & Hamill, O. P. Effects of mechano-gated cation channel blockers on Xenopus oocyte growth and development. J. Membr. Biol. 165, 161–174 (1998).

    Article  CAS  Google Scholar 

  17. Riccio, A. et al. mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Mol. Brain Res. 109, 95–104 (2002).

    Article  CAS  Google Scholar 

  18. Zitt, C. et al. Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron 16, 1189–1196 (1996).

    Article  CAS  Google Scholar 

  19. Lockwich, T. P. et al. Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J. Biol. Chem. 275, 11934–11942 (2000).

    Article  CAS  Google Scholar 

  20. Sinkins, W. G., Estacion, M. & Schilling, W. P. Functional expression of TRPC1: a human homologue of the Drosophila TRP channel. Biochem. J. 331, 331–339 (1998).

    Article  CAS  Google Scholar 

  21. Lintschinger, B. et al. Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive cation channels. J. Biol. Chem. 275, 27799–27805 (2000).

    CAS  PubMed  Google Scholar 

  22. Brereton, H. M., Chen, J., Rychkov, G., Harland, M. L. & Barritt, G. J. Maitotoxin activates an endogenous non-selective cation channel and is an effective initiator of the activation of the heterologously expressed hTRPC-1 (transient receptor potential) non-selective cation channel in H4-IIE liver cells. Biochim. Biophys. Acta 1540, 107–126 (2001).

    Article  CAS  Google Scholar 

  23. Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003).

    Article  CAS  Google Scholar 

  24. Vandebrouck, C., Martin, D., Colson-Van Schoor, M., Debaix, H. & Gailly, P. Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J. Cell Biol. 158, 1089–1096 (2002).

    Article  CAS  Google Scholar 

  25. Hofmann, T., Schaeffer, M. Schultz, G. & Gudermann, T. Subunit composition of mammalian transient receptor potential channels in living cells. Proc. Natl Acad. Sci. USA 99, 7461–7466 (2002).

    Article  CAS  Google Scholar 

  26. Tsiokas, L. et al. Specific association of the gene product of pkD2 with the TRPC1 channel. Proc. Natl Acad. Sci. USA 96, 3934–3939 (1999).

    Article  CAS  Google Scholar 

  27. Hamill, O. P. & Martinac, B. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685–740 (2001).

    Article  CAS  Google Scholar 

  28. Wall, D. A. & Patel, S. Isolation of plasma membrane complexes from Xenopus oocytes. J. Membr. Biol. 107, 189–201 (1989).

    Article  CAS  Google Scholar 

  29. Jespersen, T., Grunnet, M., Angelo, K., Klærke, D. A. & Olesen, S. P. Dual function vector for protein expression in both mammalian cells and Xenopus laevis oocytes. Biotechniques 32, 536–540 (2002).

    Article  CAS  Google Scholar 

  30. McBride, D. W. Jr & Hamill, O. P. Pressure-clamp: a method for rapid step perturbation of mechanosensitive channels. Pflügers Archiv. 421, 606–612 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Montell for the cDNA, T. Jespersen for the pXOOM vector, A. Rodgers, C. Thompson (UWA) and B. Xu (UTMB) for help with the FPLC; L. Vergara for help with the imaging; D. Roberts for collecting the Litoria; and D. Konkel for comments on the manuscript. We also thank the Cystic Fibrosis Foundation, the Department of Defense and the Raine Medical Research Foundation for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen P. Hamill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Fig S1, Fig S2, Fig S3 (PDF 551 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maroto, R., Raso, A., Wood, T. et al. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7, 179–185 (2005). https://doi.org/10.1038/ncb1218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1218

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing