Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1


Adenovirus type 2 (Ad2) imports its DNA genome through the nuclear pore complex (NPC) of cells in interphase for viral production. Here we identify the NPC-filament protein CAN/Nup214 as a docking site for incoming Ad2 capsids. Binding to CAN is independent of cytosolic factors. Capsids disassemble at NPCs to free their DNA for import. This process requires binding of nuclear histone H1 to the stably docked capsids and involves H1-import factors, restricting this irreversible process to the proximity of the nucleus. Our results provide a molecular mechanism for disassembly of Ad2 and reveal an unexpected function of histone H1 in virus-mediated DNA import.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Ad2 binding to nuclear envelopes is cytosol- and Ran-independent.
Figure 2: The NPC protein CAN/Nup214 is a docking site for Ad2.
Figure 3: Antibody-targeting to CAN/Nup214 interferes with Ad2 disassembly in A549 cells.
Figure 4: Anti-CAN antibodies inhibit Ad2 import in vivo.
Figure 5: Histone H1.2 binds Ad2 in vitro and in vivo.
Figure 6: Ad2 but not Ad3 hexon contains a subgroup-specific acidic cluster.
Figure 7: Anti-histone H1 antibodies inhibit Ad2 disassembly and nuclear import of DNA in A549 cells.
Figure 8: Histone H1 and Ad2–TR colocalize after virus disassembly.
Figure 9: Model for Ad2 disassembly and DNA import.


  1. 1

    Whittaker, G. R., Kann, M. & Helenius, A. Viral entry into the nucleus. Annu. Rev. Cell Dev. Biol. 16, 627–651 (2000).

    CAS  Article  Google Scholar 

  2. 2

    Shenk, T. in Fundamental Virology (eds Fields, B. N., Knipe, D. M. & Howley, P. M.) 979–1016 (Lippincott-Raven, New York, 1996).

    Google Scholar 

  3. 3

    Greber, U. F. et al. The role of the nuclear pore complex in adenovirus DNA entry. EMBO J. 16, 5998–6007 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Nakano, M. Y., Boucke, K., Suomalainen, M., Stidwill, R. P. & Greber, U. F. The first step of adenovirus type 2 disassembly occurs at the cell surface, independently of endocytosis and escape to the cytosol. J. Virol. 74, 7085–7095 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Greber, U. F., Willetts, M., Webster, P. & Helenius, A. Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75, 477–486 (1993).

    CAS  Article  Google Scholar 

  6. 6

    Stoffler, D., Fahrenkrog, B. & Aebi, U. The nuclear pore complex: from molecular architecture to functional dynamics. Curr. Opin. Cell Biol. 11, 391–401 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Rout, M. P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Ryan, K. J. & Wente, S. R. The nuclear pore complex: a protein machine bridging the nucleus and cytoplasm. Curr. Opin. Cell Biol. 12, 361–371 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).

    CAS  Article  Google Scholar 

  10. 10

    Rexach, M. & Blobel, G. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83, 683–692 (1995).

    CAS  Article  Google Scholar 

  11. 11

    Snow, C. M., Senior, A. & Gerace, L. Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J. Cell Biol. 104, 1143–1156 (1987).

    CAS  Article  Google Scholar 

  12. 12

    Wisnivesky, J. P., Leopold, P. L. & Crystal, R. G. Specific binding of the adenovirus capsid to the nuclear envelope. Hum. Gene Ther. 10, 2187–2195 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Panté, N., Bastos, R., McMorrow, I., Burke, B. & Aebi, U. Interactions and three-dimensional localization of a group of nuclear pore complex proteins. J. Cell Biol. 126, 603–617 (1994).

    Article  Google Scholar 

  14. 14

    Fornerod, M., Boer, J., van Baal, S., Morreau, H. & Grosveld, G. Interaction of cellular proteins with the leukemia specific fusion proteins DEK-CAN and SET-CAN and their normal counterpart, the nucleoporin CAN. Oncogene 13, 1801–1808 (1996).

    CAS  PubMed  Google Scholar 

  15. 15

    Chi, N. C., Adam, E. J. H. & Adam, S. A. Sequence and characterization of cytoplasmic nuclear protein import factor p97. J. Cell Biol. 130, 265–274 (1995).

    CAS  Article  Google Scholar 

  16. 16

    Yokoyama, N. et al. A giant nucleopore protein that binds Ran/TC4. Nature 376, 184–188 (1995).

    CAS  Article  Google Scholar 

  17. 17

    Greber, U. F. & Gerace, L. Nuclear protein import is inhibited by an antibody to a lumenal epitope of a nuclear pore complex glycoprotein. J. Cell Biol. 116, 15–30 (1992).

    CAS  Article  Google Scholar 

  18. 18

    Nakielny, S., Shaikh, S., Burke, B. & Dreyfuss, G. Nup153 is an M9-containing mobile nucleoporin with a novel ran-binding domain. EMBO J. 18, 1982–1995 (1999).

    CAS  Article  Google Scholar 

  19. 19

    Nakano, M. Y. & Greber, U. F. Quantitative microscopy of fluorescent adenovirus entry. J. Struct. Biol. 129, 57–68 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Greber, U. F., Webster, P., Weber, J. & Helenius, A. The role of the adenovirus protease in virus entry into cells. EMBO J. 15, 1766–1777 (1996).

    CAS  Article  Google Scholar 

  21. 21

    Cerf, C. et al. Homo- and heteronuclear two-dimensional NMR studies of the globular domain of histone H1: full assignment, tertiary structure, and comparison with the globular domain of histone H5. Biochemistry 33, 11079–11086 (1994).

    CAS  Article  Google Scholar 

  22. 22

    Thomas, J. O. Histone H1: location and role. Curr. Opin. Cell Biol. 11, 312–317 (1999).

    CAS  Article  Google Scholar 

  23. 23

    Rux, J. J. & Burnett, R. M. Type-specific epitope locations revealed by X-ray crystallographic study of adenovirus type 5 hexon. Mol. Ther. 1, 18–30 (2000).

    CAS  Article  Google Scholar 

  24. 24

    Bustin, M. Preparation and application of immunological probes for nucleosomes. Methods Enzymol. 170, 214–51 (1989).

    CAS  Article  Google Scholar 

  25. 25

    Jakel, S. et al. The importin beta/importin 7 heterodimer is a functional nuclear import receptor for histone H1. EMBO J. 18, 2411–2423 (1999).

    CAS  Article  Google Scholar 

  26. 26

    Sodeik, B. Mechanisms of viral transport in the cytoplasm. Trends Microbiol. 8, 465–472 (2000).

    CAS  Article  Google Scholar 

  27. 27

    Suomalainen, M., Nakano, M. Y., Boucke, K., Keller, S. & Greber, U. F. Adenovirus-activated PKA and p38/MAPK pathways boost microtubule-mediated nuclear targeting of virus. EMBO J. 20, 1310–1319 (2001).

    CAS  Article  Google Scholar 

  28. 28

    Ojala, P. M., Sodeik, B., Ebersold, M. W., Kutay, U. & Helenius, A. Herpes simplex virus type 1 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro. Mol. Cell. Biol. 20, 4922–4931 (2000).

    CAS  Article  Google Scholar 

  29. 29

    Russell, W. C. Update on adenovirus and its vectors. J. Gen. Virol. 81, 2573–2604 (2000).

    CAS  Article  Google Scholar 

  30. 30

    Fornerod, M. et al. The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J. 16, 807–816 (1997).

    CAS  Article  Google Scholar 

  31. 31

    Huber, J. et al. Snurportin1, an m3G-cap-specific nuclear import receptor with a novel domain structure. EMBO J. 17, 4114–4126 (1998).

    CAS  Article  Google Scholar 

  32. 32

    Doenecke, D. et al. Histones: genetic diversity and tissue-specific gene expression. Histochem. Cell Biol. 107, 1–10 (1997).

    CAS  Article  Google Scholar 

  33. 33

    Parseghian, M. H., Henschen, A. H., Krieglstein, K. G. & Hamkalo, B. A. A proposal for a coherent mammalian histone H1 nomenclature correlated with amino acid sequences. Protein Sci. 3, 575–587 (1994).

    CAS  Article  Google Scholar 

  34. 34

    Leclerc, D., Chapdelaine, Y. & Hohn, T. Nuclear targeting of the cauliflower mosaic virus coat protein. J. Virol. 73, 553–560 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Kann, M., Sodeik, B., Vlachou, A., Gerlich, W. H. & Helenius, A. Phosphorylation-dependent binding of hepatitis B virus core particles to the nuclear pore complex. J. Cell Biol. 145, 45–55 (1999).

    CAS  Article  Google Scholar 

  36. 36

    Mabit, H., Breiner, K. M., Knaust, A., Zachmann-Brand, B. & Schaller, H. Signals for bidirectional nucleocytoplasmic transport in the duck hepatitis B virus capsid protein. J. Virol. 75, 1968–1977 (2001).

    CAS  Article  Google Scholar 

  37. 37

    Lever, M. A., Th'ng, J. P., Sun, X. & Hendzel, M. J. Rapid exchange of histone H1.1 on chromatin in living human cells. Nature 408, 873–876 (2000).

    CAS  Article  Google Scholar 

  38. 38

    Misteli, T., Gunjan, A., Hock, R., Bustin, M. & Brown, D. T. Dynamic binding of histone H1 to chromatin in living cells. Nature 408, 877–881 (2000).

    CAS  Article  Google Scholar 

  39. 39

    Saphire, A. C. S. Guan, T. L., Schirmer, E. C., Nemerow, G. R. & Gerace, L. Nuclear import of adenovirus DNA in vitro involves the nuclear protein import pathway and hsc70. J. Biol. Chem. 275, 4298–4304 (2000).

    CAS  Article  Google Scholar 

  40. 40

    Suomalainen, M. et al. Microtubule-dependent minus and plus end-directed motilities are competing processes for nuclear targeting of adenovirus. J. Cell Biol. 144, 657–672 (1999).

    CAS  Article  Google Scholar 

  41. 41

    Pinol-Roma, S. & Dreyfuss, G. Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 355, 730–732 (1992).

    CAS  Article  Google Scholar 

  42. 42

    Yokoyama, N. et al. A giant nucleopore protein that binds Ran/TC4. Nature 376, 184–188 (1995).

    CAS  Article  Google Scholar 

  43. 43

    Bustin, M. & Stollar, B. D. Immunochemical specificity in lysine-rich histone subfractions. J. Biol. Chem. 247, 5716–21 (1972).

    CAS  PubMed  Google Scholar 

  44. 44

    Melchior, F., Paschal, B., Evans, J. & Gerace, L. Inhibition of nuclear protein import by nonhydrolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor. J. Cell Biol. 123, 1649–1659 (1993).

    CAS  Article  Google Scholar 

  45. 45

    Drabent, B., Kunz, C. & Doenecke, D. A rat histone H2B pseudogene is closely associated with the histone H1d gene. Biochim. Biophys. Acta 1172, 193–196 (1993).

    CAS  Article  Google Scholar 

Download references


We thank P. Groscurth for access to the confocal laser scanning microscope and P. Sonderegger for access to the SMART system, U. Ziegler and P. Cinelli for assistance and U. Aebi, U. Kutay and T. Misteli for comments on the manuscript. Numerous investigators are gratefully acknowledged for their gifts of reagents (and are indicated in the Methods section) and H. van der Velde is acknowledged for preparation of C terminus CAN/Nup214. The work was supported by the Swiss National Science Foundation and the Kanton of Zürich.

Author information



Supplementary information

Supplementary Figures

Figure S1 Microinjected anti-NPC antibodies reduce nuclear import of FITC–BSA–NLS. (PDF 614 kb)

Figure S2 Histone H1 import factors are required for nuclear import of Ad2–DNA.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Trotman, L., Mosberger, N., Fornerod, M. et al. Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nat Cell Biol 3, 1092–1100 (2001).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing