Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increased filamin binding to β-integrin cytoplasmic domains inhibits cell migration

Abstract

Multicellular animal development depends on integrins. These adhesion receptors link to the actin cytoskeleton, transmitting biochemical signals and force during cell migration and interactions with the extracellular matrix. Many integrin–cytoskeleton connections are formed by filamins and talin. The β7 integrin tail binds strongly to filamin and supports less migration, fibronectin matrix assembly and focal adhesion formation than either the β1D tail, which binds strongly to talin, or the β1A tail, which binds modestly to both filamin and talin. To probe the role of filamin binding, we mapped the filamin-binding site of integrin tails and identified amino acid substitutions that led to selective loss of filamin binding to the β7 tail and gain of filamin binding to the β1A tail. These changes affected cell migration and membrane protrusions but not fibronectin matrix assembly or focal adhesion formation. Thus, tight filamin binding restricts integrin-dependent cell migration by inhibiting transient membrane protrusion and cell polarization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The β7 cytoplasmic tail inhibits cell migration and FN matrix formation, and results in peripheral localization of focal adhesions.
Figure 2: A six-amino-acid sequence in the β7 tail controls FLNa binding.
Figure 3: Valine to isoleucine substitutions in the β1A tail result in increased FLNa binding.
Figure 4: Isoleucine to valine substitutions in the β7 tail inhibit FLNa binding.
Figure 5: Valine to isoleucine substitutions in the β1A tail enhance FLNa localization and immunoprecipitation with integrins.
Figure 6: Increased FLNa binding to β-integrin tails inhibits cell migration without altering FN matrix assembly.
Figure 7: Increased FLNa binding to β-integrin tails reduces the speed of cell migration and reduces transient membrane protrusion.

Similar content being viewed by others

References

  1. Tamkun, J. W. et al. Structure of integrin, a glycoprotein involved in transmembrane linkage between fibronectin and actin. Cell 46, 271–282 (1986).

    Article  CAS  Google Scholar 

  2. Huttenlocher, A., Ginsberg, M. H. & Horwitz, A. F. Modulation of cell migration by integrin-mediated cytoskeletal linkages and ligand-binding affinity. J. Cell Biol. 134, 1551–1562 (1996).

    Article  CAS  Google Scholar 

  3. Ali, I. U. & Hynes, R. O. Effects of cytochalasin B and colchicine on attachment of a major surface protein of fibroblasts. Biochim. Biophys. Acta 471, 16–24 (1977).

    Article  CAS  Google Scholar 

  4. Wu, C., Keivens, V. M., O'Toole, T. E., McDonald, J. A. & Ginsberg, M. H. Integrin activation and cytoskeletal interaction are essential for the assembly of a fibronectin matrix. Cell 83, 715–724 (1995).

    Article  CAS  Google Scholar 

  5. Reszka, A. A., Hayashi, Y. & Horwitz, A. F. Identification of amino acid sequences in the integrin β1 cytoplasmic domain implicated in cytoskeletal association. J. Cell Biol. 117, 1321–1330 (1992).

    Article  CAS  Google Scholar 

  6. Otey, C. A., Pavalko, F. M. & Burridge, K. An interaction between α actinin and the β1 integrin subunit in vitro. J. Cell Biol. 111, 721–729 (1990).

    Article  CAS  Google Scholar 

  7. Pfaff, M., Liu, S., Erle, D. J. & Ginsberg, M. H. Integrin β cytoplasmic domains differentially bind to cytoskeletal proteins. J. Biol. Chem. 273, 6104–6109 (1998).

    Article  CAS  Google Scholar 

  8. Horwitz, A., Duggan, K., Buck, C. A., Beckerle, M. C. & Burridge, K. Interaction of plasma membrane fibronectin receptor with talin—a transmembrane linkage. Nature 320, 531–533 (1986).

    Article  CAS  Google Scholar 

  9. Calderwood, D. A., Shattil, S. J. & Ginsberg, M. H. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J. Biol. Chem. 275, 22607–22610 (2000).

    Article  CAS  Google Scholar 

  10. Critchley, D. R. Focal adhesions—the cytoskeletal connection. Curr. Opin. Cell Biol. 12, 133–139 (2000).

    Article  CAS  Google Scholar 

  11. Goldmann, W. H., Bremer, A., Haner, M., Aebi, U. & Isenberg, G. Native talin is a dumbbell-shaped homodimer when it interacts with actin. J. Struct. Biol. 112, 3–10 (1994).

    Article  CAS  Google Scholar 

  12. Djinovic-Carugo, K., Young, P., Gautel, M. & Saraste, M. Structure of the α-actinin rod: molecular basis for cross-linking of actin filaments. Cell 98, 537–546 (1999).

    Article  CAS  Google Scholar 

  13. Gorlin, J. B. et al. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring. J. Cell Biol. 111, 1089–1105 (1990).

    Article  CAS  Google Scholar 

  14. Liu, S., Calderwood, D. A. & Ginsberg, M. H. Integrin cytoplasmic domain-binding proteins. J. Cell Sci. 113, 3563–3571 (2000).

    CAS  PubMed  Google Scholar 

  15. Belkin, A. M. et al. Muscle β1D integrin reinforces the cytoskeleton–matrix link: modulation of integrin adhesive function by alternative splicing. J. Cell Biol. 139, 1583–1595 (1997).

    Article  CAS  Google Scholar 

  16. Sharma, C. P., Ezzell, R. M. & Arnaout, M. A. Direct interaction of filamin (ABP-280) with the β2-integrin subunit CD18. J. Immunol. 154, 3461–3470 (1995).

    CAS  PubMed  Google Scholar 

  17. Sampath, R., Gallagher, P. J. & Pavalko, F. M. Cytoskeletal interactions with the leukocyte integrin β2 cytoplasmic tail. Activation-dependent regulation of associations with talin and α-actinin. J. Biol. Chem. 273, 33588–33594 (1998).

    Article  CAS  Google Scholar 

  18. Stossel, T. P. et al. Filamins as integrators of cell mechanics and signalling. Nature Rev. Mol. Cell Biol. 2, 138–145 (2001).

    Article  CAS  Google Scholar 

  19. van der Flier, A. & Sonnenberg, A. Structural and functional aspects of filamins. Biochim. Biophys. Acta 1538, 99–117 (2001).

    Article  CAS  Google Scholar 

  20. Hughes, P. E. et al. Breaking the integrin hinge: a defined structural constraint regulates integrin signaling. J. Biol. Chem. 271, 6571–6574 (1996).

    Article  CAS  Google Scholar 

  21. Wang, K., Ash, J. F. & Singer, S. J. Filamin, a new high-molecular-weight protein found in smooth muscle and non-muscle cells. Proc. Natl. Acad. Sci. USA 72, 4483–4486 (1975).

    Article  CAS  Google Scholar 

  22. Mittal, B., Sanger, J. M. & Sanger, J. W. Binding and distribution of fluorescently labeled filamin in permeabilized and living cells. Cell Motil. Cytoskeleton 8, 345–359 (1987).

    Article  CAS  Google Scholar 

  23. Brown, P. L. & Juliano, R. L. Selective inhibition of fibronectin-mediated cell adhesion by monoclonal antibodies to a cell-surface glycoprotein. Science 228, 1448–1451 (1985).

    Article  CAS  Google Scholar 

  24. O'Toole, T. E. et al. Integrin cytoplasmic domains mediate inside-out signal transduction. J. Cell Biol. 124, 1047–1059 (1994).

    Article  CAS  Google Scholar 

  25. Romzek, N. C. et al. Use of a β1 integrin-deficient human T cell to identify β1 integrin cytoplasmic domain sequences critical for integrin function. Mol. Biol. Cell 9, 2715–2727 (1998).

    Article  CAS  Google Scholar 

  26. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  27. Bashaw, G. J., Kidd, T., Murray, D., Pawson, T. & Goodman, C. S. Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the Roundabout receptor. Cell 101, 703–715 (2000).

    Article  CAS  Google Scholar 

  28. Bear, J. E. et al. Negative regulation of fibroblast motility by Ena/VASP proteins. Cell 101, 717–728 (2000).

    Article  CAS  Google Scholar 

  29. Marti, A. et al. Actin-binding protein-280 binds the stress-activated protein kinase (SAPK) activator SEK-1 and is required for tumor necrosis factor-α activation of SAPK in melanoma cells. J. Biol. Chem. 272, 2620–2628 (1997).

    Article  CAS  Google Scholar 

  30. Bellanger, J. M. et al. The Rac1- and RhoG-specific GEF domain of trio targets filamin to remodel cytoskeletal actin. Nature Cell Biol. 2, 888–892 (2000).

    Article  CAS  Google Scholar 

  31. Ohta, Y., Suzuki, N., Nakamura, S., Hartwig, J. H. & Stossel, T. P. The small GTPase RalA targets filamin to induce filopodia. Proc. Natl. Acad. Sci. USA 96, 2122–2128 (1999).

    Article  CAS  Google Scholar 

  32. Cunningham, C. C. et al. Actin-binding protein requirement for cortical stability and efficient locomotion. Science 255, 325–327 (1992).

    Article  CAS  Google Scholar 

  33. Fox, J. W. et al. Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21, 1315–1325 (1998).

    Article  CAS  Google Scholar 

  34. Meyer, S. C., Sanan, D. A. & Fox, J. E. Role of actin-binding protein in insertion of adhesion receptors into the membrane. J. Biol. Chem. 273, 3013–3020 (1998).

    Article  CAS  Google Scholar 

  35. Rost, B. PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol. 266, 525–539 (1996).

    Article  CAS  Google Scholar 

  36. Harbury, P. B., Zhang, T., Kim, P. S. & Alber, T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262, 1401–1407 (1993).

    Article  CAS  Google Scholar 

  37. Ylanne, J. et al. Distinct functions of integrin α and β subunit cytoplasmic domains in cell spreading and formation of focal adhesions. J. Cell Biol. 122, 223–233 (1993).

    Article  CAS  Google Scholar 

  38. Greenwood, J. A., Theibert, A. B., Prestwich, G. D. & Murphy-Ullrich, J. E. Restructuring of focal adhesion plaques by PI 3-kinase: regulation by PtdIns (3,4,5)-p3 binding to α-actinin. J. Cell Biol. 150, 627–642 (2000).

    Article  CAS  Google Scholar 

  39. Loo, D. T., Kanner, S. B. & Aruffo, A. Filamin binds to the cytoplasmic domain of the β1-integrin. Identification of amino acids responsible for this interaction. J. Biol. Chem. 273, 23304–23312 (1998).

    Article  CAS  Google Scholar 

  40. Mulrooney, J., Foley, K., Vineberg, S., Barreuther, M. & Grabel, L. Phosphorylation of the β1 integrin cytoplasmic domain: toward an understanding of function and mechanism. Exp. Cell Res. 258, 332–341 (2000).

    Article  CAS  Google Scholar 

  41. Glogauer, M. et al. The role of actin-binding protein 280 in integrin-dependent mechanoprotection. J. Biol. Chem. 273, 1689–1698 (1998).

    Article  CAS  Google Scholar 

  42. Der Ven, P. F. et al. Indications for a novel muscular dystrophy pathway. γ-Filamin, the muscle-specific filamin isoform, interacts with myotilin. J. Cell Biol. 151, 235–248 (2000).

    Article  Google Scholar 

  43. Kiosses, W. B., Shattil, S. J., Pampori, N. & Schwartz, M. A. Rac recruits high-affinity integrin αVβ3 to lamellipodia in endothelial cell migration. Nature Cell Biol. 3, 316–320 (2001).

    Article  CAS  Google Scholar 

  44. Rose, D. M., Cardarelli, P. M., Cobb, R. R. & Ginsberg, M. H. Soluble VCAM-1 binding to α4 integrins is cell-type specific and activation dependent and is disrupted during apoptosis in T cells. Blood 95, 602–609 (2000).

    CAS  PubMed  Google Scholar 

  45. Hughes, P. E. et al. Suppression of integrin activation: a novel function of a Ras/Raf-initiated MAP kinase pathway. Cell 88, 521–530 (1997).

    Article  CAS  Google Scholar 

  46. Liu, S. et al. Binding of paxillin to α4 integrins modifies integrin-dependent biological responses. Nature 402, 676–681 (1999).

    Article  CAS  Google Scholar 

  47. Calderwood, D. A. et al. The talin head domain binds to integrin β subunit cytoplasmic tails and regulates integrin activation. J. Biol. Chem. 274, 28071–28074 (1999).

    Article  CAS  Google Scholar 

  48. Kiosses, W. B., Daniels, R. H., Otey, C., Bokoch, G. M. & Schwartz, M. A. A role for p21-activated kinase in endothelial cell migration. J. Cell Biol. 147, 831–844 (1999).

    Article  CAS  Google Scholar 

  49. Cox, E. A., Sastry, S. K. & Huttenlocher, A. Integrin-mediated adhesion regulates cell polarity and membrane protrusion through the Rho family of GTPases. Mol. Biol. Cell 12, 265–277 (2001).

    Article  CAS  Google Scholar 

  50. Sechler, J., Takada, Y. & Schwarzbauer, J. Altered rate of fibronectin matrix assembly by deletion of the first type III repeats. J. Cell Biol. 134, 573–583 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health and The Susan G. Komen Breast Cancer Foundation. D.M.R. was supported by an advanced postdoctoral fellowship from The Juvenile Diabetes Foundation International. D.G.W was supported by a postdoctoral grant from The Arthritis Foundation. We thank X.-T. Nguyen and J. Byrnes for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark H. Ginsberg.

Supplementary information

Supplementary figures

Figure S1 The β1A, β1D and β7 chimeric integrins are expressed at similar levels and mediate comparable levels of cell adhesion. (PDF 297 kb)

Figure S2 Chimeric αIIbβ3 integrins in which the β3 tail was replaced with the β1A, β1A(V36,40I) or β7(I36,40V) tail are expressed at similar levels and mediate comparable levels of cell adhesion.

Figure S3 Expression of α4β1 on Jurkat cell lines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calderwood, D., Huttenlocher, A., Kiosses, W. et al. Increased filamin binding to β-integrin cytoplasmic domains inhibits cell migration. Nat Cell Biol 3, 1060–1068 (2001). https://doi.org/10.1038/ncb1201-1060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1201-1060

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing