Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A yeast DNA J protein required for uncoating of clathrin-coated vesicles in vivo

Abstract

Clathrin-coated vesicles mediate diverse processes such as nutrient uptake, downregulation of hormone receptors, formation of synaptic vesicles, virus entry, and transport of biosynthetic proteins to lysosomes. Cycles of coat assembly and disassembly are integral features of clathrin-mediated vesicular transport (Fig. 1a). Coat assembly involves recruitment of clathrin triskelia, adaptor complexes and other factors that influence coat assembly, cargo sequestration, membrane invagination and scission1,2,3 (Fig. 1a). Coat disassembly is thought to be essential for fusion of vesicles with target membranes and for recycling components of clathrin coats to the cytoplasm for further rounds of vesicle formation. In vitro, cytosolic heat-shock protein 70 (Hsp70) and the J-domain co-chaperone auxilin catalyse coat disassembly4. However, a specific function of these factors in uncoating in vivo has not been demonstrated, leaving the physiological mechanism and significance of uncoating unclear. Here we report the identification and characterization of a Saccharomyces cerevisiae J-domain protein, Aux1. Inactivation of Aux1 results in accumulation of clathrin-coated vesicles, impaired cargo delivery, and an increased ratio of vesicle-associated to cytoplasmic clathrin. Our results demonstrate an in vivo uncoating function of a J domain co-chaperone and establish the physiological significance of uncoating in transport mediated by clathrin-coated vesicles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aux1 is a functional homologue of auxilin.
Figure 2: aux1Δ cells accumulate clathrin-coated vesicles.
Figure 3: Aux1 depletion impairs clathrin-dependent protein transport and uncoating of clathrin-coated vesicles.
Figure 4: In situ impact of Aux1 depletion on intracellular clathrin distribution.
Figure 5: The Aux1 J domain is required for uncoating.

Similar content being viewed by others

References

  1. Marsh, M. & McMahon, H. T. Science 285, 215–220 (1999).

    Article  CAS  Google Scholar 

  2. Pishvaee, B. & Payne, G. S. Cell 95 , 443–446 (1998).

    Article  CAS  Google Scholar 

  3. Schmid, S. L. Annu. Rev. Biochem. 66, 511–548 (1997).

    Article  CAS  Google Scholar 

  4. Ungewickell, E. et al. Nature 378, 632–635 (1995).

    Article  CAS  Google Scholar 

  5. Kelley, W. L. Trends Biochem. 23, 222–227 (1998).

    Article  CAS  Google Scholar 

  6. Holstein, S. E. H., Ungewickell, H. & Ungewickell, E. J. Cell Biol. 135 , 925–937 (1996).

    Article  CAS  Google Scholar 

  7. Blatch, G. L. & Lassle, M. Bioessays 21, 932–939 (1999).

    Article  CAS  Google Scholar 

  8. Barlowe, C. et al. Cell 77, 895–907 (1994).

    Article  CAS  Google Scholar 

  9. Yeung, B. G., Phan, H. L. & Payne, G. S. Mol. Biol. Cell 10, 3643– 3659 (1999).

    Article  CAS  Google Scholar 

  10. Seeger, M. & Payne, G. S. EMBO J. 11, 2811–2818 (1992).

    Article  CAS  Google Scholar 

  11. Bryant, N. J. & Stevens, T. H. Microbiol. Mol. Biol. Rev. 62, 230–247 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tan, P. K., Davis, N. G., Sprague, G. F. & Payne, G. S. J. Cell Biol. 123, 1707–1716 (1993).

    Article  CAS  Google Scholar 

  13. Raymond, C. K., Howald-Stevenson, I., Vater, C. A. & Stevens, T. H. Mol. Biol. Cell 3, 1389– 1402 (1992).

    Article  CAS  Google Scholar 

  14. Jiang, R-F., Greener, T., Barouch, W., Greene, L. & Eisenberg, E. J. Biol. Chem. 272 , 6141–6145 (1997).

    Article  CAS  Google Scholar 

  15. Honing, S., Kreimer, G., Robenek, H. & Jockusch, B. M. J. Cell Sci. 107, 1185–1196 (1994).

    PubMed  Google Scholar 

  16. Umeda, A., Meyerholz, A. & Ungewickell, E. Eur. J. Cell Biol. 79, 336– 342 (2000).

    Article  CAS  Google Scholar 

  17. Cremona, O. et al. Cell 99, 179–186 (1999).

    Article  CAS  Google Scholar 

  18. DeLuca-Flaherty, C., McKay, D. B., Parham, P. & Hill, B. L. Cell 62, 875–887 ( 1990).

    Article  CAS  Google Scholar 

  19. Harris, T. W., Hartwig, E., Horvitz, H. R. & Jorgensen, E. M. J. Cell Biol. 150, 589–599 (2000).

    Article  CAS  Google Scholar 

  20. Owen, D. J. et al. Cell 97, 805–815 (1999).

    Article  CAS  Google Scholar 

  21. Pishvaee, B., Munn, A. & Payne, G. S. EMBO J. 16, 2227– 2239 (1997).

    Article  CAS  Google Scholar 

  22. Traub, L. M., Downs, M. A., Westrich, J. L. & Fremont, D. H. Proc. Natl Acad. Sci. USA 96, 8907– 8912 (1999).

    Article  CAS  Google Scholar 

  23. Greener, T., Zhao, X., Nojima, H., Eisenberg, E. & Greene, L. E. J. Biol. Chem. 275, 1365–1370 (2000).

    Article  CAS  Google Scholar 

  24. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. Nucleic Acids Res. 21, 3329–3330 (1993).

    Article  CAS  Google Scholar 

  25. Longtine, M. S. et al. Yeast 14, 953–961 (1998).

    Article  CAS  Google Scholar 

  26. Vowels, J. J. & Payne, G. S. Mol. Biol. Cell 9, 1351–1365 (1998).

    Article  CAS  Google Scholar 

  27. Ryazantsev, S., Tishchenko, V., Vasiliev, V., Zav'yalov, V. & Abramov, V. Eur. J. Biochem. 190, 393–399 ( 1990).

    Article  CAS  Google Scholar 

  28. Bleazard, W. et al. Nature Cell Biol. 1, 298– 304 (1999).

    Article  CAS  Google Scholar 

  29. Rieder, S. E., Banta, L. M., Kohrer, K., McCaffery, J. M. & Emr, S. D. Mol. Biol. Cell 7, 985–999 (1996).

    Article  CAS  Google Scholar 

  30. Altschul, S. F. et al. Nucleic Acids Res. 25, 3389– 3402 (1997).

    Article  CAS  Google Scholar 

  31. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. Nucleic Acids Res. 25, 4876–4882 ( 1997).

    Article  CAS  Google Scholar 

  32. Bateman, A. et al. Nucleic Acids Res. 28, 263– 266 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Nakamura for construction of the GST–Aux1 fusion, A. Rajasekaran for assistance with confocal microscopy, and A. van der Bliek and J. Hutton for comments on the manuscript. We also thank T. Graham for sharing unpublished results. This study was supported by NIH grant RO1 GM39040 to G.S.P.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Babak Pishvaee or Gregory S. Payne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pishvaee, B., Costaguta, G., Yeung, B. et al. A yeast DNA J protein required for uncoating of clathrin-coated vesicles in vivo. Nat Cell Biol 2, 958–963 (2000). https://doi.org/10.1038/35046619

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35046619

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing