Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif

Abstract

Here we describe a protein product of the human septin H5/PNUTL2/CDCrel2b gene, which we call ARTS (for apoptosis-related protein in the TGF-β signalling pathway). ARTS is expressed in many cells and acts to enhance cell death induced by TGF-β or, to a lesser extent, by other apoptotic agents. Unlike related septin gene products, ARTS is localized to mitochondria and translocates to the nucleus when apoptosis occurs. Mutation of the P-loop of ARTS abrogates its competence to activate caspase 3 and to induce apoptosis. Taken together, these observations expand the functional attributes of septins previously described as having roles in cytokinesis and cellular morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ARTS represents a unique transcript of the H5 septin gene.
Figure 2: ARTS is detected as a 32K protein in cell lysates.
Figure 3: ARTS is essential for TGFβ-induced apoptosis.
Figure 4: ARTS-induced apoptosis correlates with caspase activation.
Figure 5: ARTS localizes to mitochondria.
Figure 6: Ligand-dependent translocation of ARTS from the mitochondria to the nucleus during apoptosis as shown by fluorescence microscopy.

Similar content being viewed by others

References

  1. Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462 ( 1995).

    Article  CAS  Google Scholar 

  2. Vaux, D. L. & Korsmeyer, S. J. Cell death in development. Cell 96, 245– 254 (1999).

    Article  CAS  Google Scholar 

  3. Nicholson, W. D. & Thornberry, N. A. Caspases: killer proteases. Trends Biochem. Sci. 257, 299–306 (1997).

    Article  Google Scholar 

  4. Thornberry, N. A. & Lazebnik, Y. Caspases: enemies within. Science 281, 1312– 1316 (1998).

    Article  CAS  Google Scholar 

  5. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405– 413 (1997).

    Article  CAS  Google Scholar 

  6. Liu, X., Zou, H., Slaughter, C. & Wang, X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89, 175– 184 (1997).

    Article  CAS  Google Scholar 

  7. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    Article  CAS  Google Scholar 

  8. Susin, S. A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441– 446 (1999).

    Article  CAS  Google Scholar 

  9. Hsing, A. Y., Kadomatsu, K., Bonham, M. J. & Danielpour, D. Regulation of apoptosis induced by transforming growth factor-beta1 in nontumorigenic rat prostatic epithelial cell lines. Cancer Res. 56 , 5146–5149 (1996).

    CAS  PubMed  Google Scholar 

  10. Haufel, T., Dormann, S., Hanusch, J., Schwieger, A. & Bauer, G. Three distinct roles for TGF-beta during intercellular induction of apoptosis: a review. Anticancer Res. 19,105–111 (1999).

    CAS  PubMed  Google Scholar 

  11. Flanders, K. C. & Roberts, A. B. Transforming growth factor-β. Cytokine Reference (eds Oppenheim, J. J. et al.) (Academic, New York, 2000).

  12. Massagué, J. & Chen, Y. G. Controlling TGF-beta signaling. Genes Dev. 14, 627– 644 (2000).

    PubMed  Google Scholar 

  13. Hartsough, M. T. & Mulder, K. M. Transforming growth factor-beta signaling in epithelial cells. Pharmacol Ther. 75, 21–41 ( 1997).

    Article  CAS  Google Scholar 

  14. Engel, M. E., McDonnell, M. A., Law, B. K. & Moses, H. L. Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J. Biol. Chem. 274, 37413 –37420 (1999).

    Article  CAS  Google Scholar 

  15. Larisch-Bloch, S. et al. Selective loss of the transforming growth factor-beta apoptotic signaling pathway in mutant NRP-154 rat prostatic epithelial cells. Cell Growth Diferf. 11, 1–10 (2000).

    CAS  Google Scholar 

  16. Field, C. M. & Kellogg, D. Septins: cytoskeletal polymers or signalling GTPases? Trends Cell Biol. 9 , 387–394 (1999).

    Article  CAS  Google Scholar 

  17. Xie, H., Surka, M., Howard, J. & Trimble, W. S. Characterization of the mammalian septin H5: distinct patterns of cytoskeletal and membrane association from other septin proteins. Cell Motil. Cytoskel. 43, 52–62 (1999).

    Article  CAS  Google Scholar 

  18. McKie, J. M., Sutherland, H. F., Harvey, E., Kim, U. J. & Scambler, P. J. A human gene similar to Drosophila melanogaster peanut maps to the DiGeorge syndrome region of 22q11. Hum. Genet. 101, 6– 12 (1997).

    Article  CAS  Google Scholar 

  19. Zieger, B., Hashimoto, Y. & Ware, J. Alternative expression of platelet glycoprotein Ib(beta) mRNA from an adjacent 5′ gene with an imperfect polyadenylation signal sequence. Clin. Invest. 99, 520– 525 (1997).

    Article  CAS  Google Scholar 

  20. Saraste, M., Sibbald, P. R. & Wittinghofer, A. The P-loop — a common motif in ATP- and GTP-binding proteins. Trends Biochem. Sci. 11, 430– 434 (1990).

    Article  Google Scholar 

  21. Aravind, L., Dixit, V. M. & Koonin, E. V. The domains of death: evolution of the apoptosis machinery. Trends Biochem. Sci. 24, 47– 53 (1999).

    Article  CAS  Google Scholar 

  22. Yuan, J. & Horvitz, H. R. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116, 309–320 ( 1992).

    CAS  PubMed  Google Scholar 

  23. Chaudhary, D., O'Rourke, K., Chinnaiyan, A. M. & Dixit, V. M. The death inhibitory molecules CED-9 and CED-4L use a common mechanism to inhibit the CED-3 death protease. J. Biol. Chem. 273, 17708–17712 ( 1998).

    Article  CAS  Google Scholar 

  24. Beites, C. L., Xie, H., Bowser, R. & Trimble, W. S. The septin CDCrel-1 binds syntaxin and inhibits exocytosis. Nature Neurosci. 2, 434–439 ( 1999).

    Article  CAS  Google Scholar 

  25. Choi, K. S., Lim, I. K., Brady, J. N. & Kim, S. J. ICE-like protease (caspase) is involved in transforming growth factor beta1-mediated apoptosis in FaO rat hepatoma cell line. Hepatology 27, 415–421 (1998).

    Article  CAS  Google Scholar 

  26. Tewari, M., Beidler, D. R. & Dixit, V. M. CrmA-inhibitable cleavage of the 70-kDa protein component of the U1 small nuclear ribonucleoprotein during Fas- and tumor necrosis factor-induced apoptosis. J. Biol. Chem. 270, 18738– 18741 (1995).

    Article  CAS  Google Scholar 

  27. Duckett, C. S. et al. Human IAP-like protein regulates programmed cell death downstream of Bcl-xL and cytochrome c. Mol. Cell Biol. 18, 608–615 (1998).

    Article  CAS  Google Scholar 

  28. Atfi, A., Buisine, M., Mazars, A. & Gespach, C. Induction of apoptosis by DPC4, a transcriptional factor regulated by transforming growth factor-beta through stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling pathway. J. Biol. Chem. 272, 24731–24734 (1997).

    Article  CAS  Google Scholar 

  29. Landstrom, M. et al. Smad7 mediates apoptosis induced by transforming growth factor beta in prostatic carcinoma cells. Curr. Biol. 10, 535–538 (2000).

    Article  CAS  Google Scholar 

  30. Yanagisawa, K. et al. Induction of apoptosis by Smad3 and down-regulation of Smad3 expression in response to TGF-beta in human normal lung epithelial cells. Oncogene 17, 1743–1747 ( 1998).

    Article  CAS  Google Scholar 

  31. Chen, R. H., Su, Y. H., Chuang, R. L. & Chang, T. Y. Suppression of transforming growth factor-beta-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway. Oncogene 17, 1959–1968 (1998).

    Article  CAS  Google Scholar 

  32. Wang, X. et al. Effect of truncated forms of the steroidogenic acute regulatory protein on intramitochondrial cholesterol transfer. Endocrinology 139, 3903–3912 ( 1998).

    Article  CAS  Google Scholar 

  33. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).

    Article  CAS  Google Scholar 

  34. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 ( 2000).

    Article  CAS  Google Scholar 

  35. Deveraux, Q. L. & Reed, J. C. IAP family proteins — suppressors of apoptosis. Genes Dev. 13, 239–252 (1999).

    Article  CAS  Google Scholar 

  36. Green, D. R. & Reed, J. C. Mitochondria and apoptosis . Science 281, 1309–1312 (1998).

    Article  CAS  Google Scholar 

  37. Kinoshita M. et al. Nedd5, a mammalian septin, is a novel cytoskeletal component interacting with actin-based structures. Genes Dev. 11, 1535–1547 (1997).

    Article  CAS  Google Scholar 

  38. Neufeld, T. P. & Rubin, G. M. The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins. Cell 77, 371–379 (1994).

    Article  CAS  Google Scholar 

  39. McCall, K. A. & Steller, H. Facing death in the fly: genetic analysis of apoptosis in Drosophila. Trends Genet. 13, 222–226 ( 1997).

    Article  CAS  Google Scholar 

  40. Guo, M. & Hay, B. A. Cell proliferation and apoptosis . Curr. Opin. Cell Biol. 11, 745– 752 (1999).

    Article  CAS  Google Scholar 

  41. Rubin, Y., Kessler-Icekson, G. & Navon, G. The effect of furosemide on calcium ion concentration in myocardial cells. Cell Calcium 18,135 –139 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Bloch for help and encouragement; D. Barzilai and Z. Ben-Ishai for support; Y. Ben-Neriah, A. Yaron, S. Gutkind and M. Zohar for discussions and advice; G. Yaniv and O. Binah for providing the neonatal ventricular myocytes; and N. Frumkin and A. H. Hsing for technical assistance. We thank D. B. Hales and K. H. Hales for providing the antiserum to recombinant murine StAR; the AU5–tag expression vector was provided by S. Gutkind; TGF-β receptor constructs were provided by J. Wrana and L. Attisano; and the p3TP–Lux construct was provided by J. Massagué. This work was supported by the Erna D. Leir Foundation for Research of Degenerative Brain Diseases, the National Alliance for Research of Schizophrenia and Depression, the National Parkinson Foundation Inc., the Israel Science Foundation funded by the Israel Academy of Sciences and Humanities (J.O.), and the NIH. H.S. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita B. Roberts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larisch, S., Yi, Y., Lotan, R. et al. A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nat Cell Biol 2, 915–921 (2000). https://doi.org/10.1038/35046566

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35046566

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing