Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Maternal Pumilio acts together with Nanos in germline development in Drosophila embryos

Abstract

The maternal RNA-binding proteins Pumilio (Pum) and Nanos (Nos) act together to specify the abdomen in Drosophila embryos. Both proteins later accumulate in pole cells, the germline progenitors. Nos is required for pole cells to differentiate into functional germline. Here we show that Pum is also essential for germline development in embryos. First, a mutation in pum causes a defect in pole-cell migration into the gonads. Second, in such pole cells, the expression of a germline-specific marker (PZ198) is initiated prematurely. Finally, pum mutation causes premature mitosis in the migrating pole cells. We show that Pum inhibits pole-cell division by repressing translation of cyclin B messenger RNA. As these phenotypes are indistinguishable from those produced by nos mutation, we conclude that Pum acts together with Nos to regulate these germline-specific events.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: pum activity is essential in pole cells for their migration into the gonads and for gene regulation.
Figure 2: nos and pum activities are both required to prevent pole-cell division during pole-cell migration.
Figure 3: nos and pum activities are both required to prevent premature expression of cyclin B in pole cells.
Figure 4: Induction of cyclin B expression is able to drive quiescent pole cells into mitosis.

References

  1. Beams, H. W. & Kessel, R. G. The problem of germ cell determinants. Int. Rev. Cytol. 39, 413–479 (1974).

    Article  CAS  Google Scholar 

  2. Eddy, E. M. Germ plasm and differentiation of the germ line. Int. Rev. Cytol. 43, 229–280 (1975).

    Article  CAS  Google Scholar 

  3. Rongo, C. & Lehmann, R. Regulated synthesis, transport and assembly of the Drosophila germ plasm. Trends Genet. 12, 102–109 (1996).

    Article  CAS  Google Scholar 

  4. Campos-Ortega, J. A. & Hartenstein, V. The Embryonic Development of Drosophila melanogaster (Springer, New York, 1985).

  5. Williamson, A. & Lehmann, R. Germ cell development in Drosophila. Annu. Rev. Cell Dev. Biol. 12, 365–391 (1996).

    Article  CAS  Google Scholar 

  6. Zalokar, M. Autoradiographic study of protein and RNA formation during early development of Drosophila eggs. Dev. Biol. 49, 425–437 (1976).

    Article  CAS  Google Scholar 

  7. Seydoux, G. & Dunn, M. A. Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster. Development 124, 2191–2201 (1997).

    CAS  PubMed  Google Scholar 

  8. Asaoka, M., Sano, H., Obara, Y. & Kobayashi, S. Maternal Nanos regulates zygotic gene expression in germline progenitors of Drosophila melanogaster. Mech. Dev. 78, 153–158 (1998).

    Article  CAS  Google Scholar 

  9. Van Doren, M., Williamson, A. L. & Lehmann, R. Regulation of zygotic gene expression in Drosophila primordial germ cells. Curr. Biol. 8, 243–246 (1998).

    Article  CAS  Google Scholar 

  10. Sonnenblick, B. P. in Biology of Drosophila (ed. Demerec, M.) 62–167 (Wiley, New York, 1950).

    Google Scholar 

  11. Kobayashi, S., Yamada, M., Asaoka, M. & Kitamura, T. Essential role of the posterior morphogen nanos for germline development in Drosophila. Nature 380, 708–711 (1996).

    Article  CAS  Google Scholar 

  12. Forbes, A. & Lehmann, R. Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development 125, 679–690 (1998).

    CAS  PubMed  Google Scholar 

  13. Wang, C. & Lehmann, R. Nanos is the localized posterior determinant in Drosophila. Cell 66, 637–647 (1991).

    Article  CAS  Google Scholar 

  14. Wang, C., Dickinson, L. K. & Lehmann, R. Genetics of nanos localization in Drosophila. Dev. Dyn. 199, 103–115 (1994).

    Article  CAS  Google Scholar 

  15. Tautz, D. Regulation of the Drosophila segmentation gene hunchback by two maternal morphgenetic centres. Nature 332, 281–284 (1988).

    Article  CAS  Google Scholar 

  16. Hülskamp, M., Schröder, C., Pfeifle, C., Jäkle, H. & Tautz, D. Posterior segmentation of the Drosophila embryo in the absence of a maternal posterior organizer gene. Nature 338, 629–632 (1989).

    Article  Google Scholar 

  17. Irish, V., Lehmann, R. & Akam, M. The Drosophila posterior-group gene nanos functions by repressing hunchback activity. Nature 338, 646–648 (1989).

    Article  CAS  Google Scholar 

  18. Struhl, G. Differing strategies for organizing anterior and posterior body pattern in Drosophila embryos. Nature 338, 741–744 (1989).

    Article  CAS  Google Scholar 

  19. Tautz, D., & Pfeifle, C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81–85 (1989).

    Article  CAS  Google Scholar 

  20. Barker, D. D., Wang, C., Moore, J., Dickinson, L. K. & Lehmann, R. Pumilio is essential for function but not for distribution of the Drosophila abdominal determinant Nanos. Genes Dev. 6, 2312–2326 (1992).

    Article  CAS  Google Scholar 

  21. Wharton, R. P. & Struhl, G. RNA regulatory elements mediate control of Drosophila body pattern by the posterior morphogen nanos. Cell 67, 955–967 (1991).

    Article  CAS  Google Scholar 

  22. Wharton, R. P., Sonoda, J., Lee, T., Patterson, M. & Murata, Y. The Pumilio RNA-binding domain is also a translational regulator. Mol. Cell 1, 863–872 (1998).

    Article  CAS  Google Scholar 

  23. Murata, Y. & Wharton, R. P. Binding of Pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Cell 80, 747–756 (1995).

    Article  CAS  Google Scholar 

  24. Underwood, E. M., Caulton, J. H., Allis, C. D. & Mahowald, A. P. Developmental fate of pole cells in Drosophila melanogaster. Dev. Biol. 77, 303–314 (1980).

    Article  CAS  Google Scholar 

  25. Technau, G. M. & Campos-Ortega, J. A. Lineage analysis of transplanted individual cells in embryos of Drosophila melanogaster. III. Commitment and proliferative capabilities of pole cells and midgut progenitors. Roux’s Arch. Dev. Biol. 195, 489–498 (1986).

    Article  Google Scholar 

  26. Su, T. T., Campbell, S. D. & O’Farrell, P. H. The cell cycle program in germ cells of the Drosophila embryo. Dev. Biol. 196, 160–170 (1998).

    Article  CAS  Google Scholar 

  27. de Nooij, J. C., Letendre, M. A. & Hariharan, I. K. A cyclin-dependent kinase inhibitor, Dacapo, is necessary for timely exit from the cell cycle during Drosophila embryogenesis. Cell 87, 1237–1247 (1996).

    Article  CAS  Google Scholar 

  28. Richardson, H., O’Keefe, L. V., Marty, T. & Saint, R. Ectopic cyclin E expression induces premature entry into S phase and disrupts pattern formation in the Drosophila eye imaginal disc. Development 121, 3371–3379 (1995).

    CAS  PubMed  Google Scholar 

  29. Sauer, K., Knoblich, J. A., Richardson, H. & Lehner, C. F. Distinct modes of cyclin E/cdc2c kinase regulation and S-phase control in mitotic and endoreduplication cycles of Drosophila embryogenesis. Genes Dev. 9, 1327–1339 (1995).

    Article  CAS  Google Scholar 

  30. Dalby, B. & Glover, D. M. Discrete sequence elements control posterior pole accumulation and translational repression of maternal cyclin B RNA in Drosophila. EMBO J. 12, 1219–1227 (1993).

    Article  CAS  Google Scholar 

  31. Knoblich, J. A. & Lehner, C. F. Synergistic action of Drosophila cyclin A and cyclin B during the G2-M transition. EMBO J. 12, 65–74 (1993).

    Article  CAS  Google Scholar 

  32. Jacobs, H. W., Knoblich, J. A. & Lehner, C. F. Drosophila Cyclin B3 is required for female fertility and is dispensable for mitosis like Cyclin B. Genes Dev. 12, 3741–3751 (1998).

    Article  CAS  Google Scholar 

  33. Lehmann, R. & Nüsslein-Volhard, C. Involvement of the pumilio gene in the transport of an abdominal signal in the Drosophila embryo. Nature 329, 167–170 (1987).

    Article  Google Scholar 

  34. Lehmann, R. & Nüsslein-Volhard, C. The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Development 112, 679–691 (1991).

    CAS  PubMed  Google Scholar 

  35. Lin, H. & Spradling, A. C. A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124, 2463–2476 (1997).

    CAS  PubMed  Google Scholar 

  36. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 (1983).

    Article  CAS  Google Scholar 

  37. Strome, S. et al. in Germline Development: Ciba Found. Symp. 182, 31–51 (John Wiley, Chichester, UK, 1994).

    Google Scholar 

  38. Lawson, K. A. & Hage, W. J. in Germline Development: Ciba Found. Symp. 182, 68–91 (John Wiley, Chichester, UK, 1994).

    Google Scholar 

  39. Mosquera, L., Forristall, C., Zhou, Y. & King, M. L. A mRNA localized to the vegetal cortex of Xenopus oocytes encodes a protein with a nanos-like zinc finger domain. Development 117, 377–386 (1993).

    CAS  PubMed  Google Scholar 

  40. Curtis, D., Apfeld, J. & Lehmann, R. nanos is an evolutionarily conserved organizer of anterior-posterior polarity. Development 121, 1899–1910 (1995).

    CAS  PubMed  Google Scholar 

  41. Zamore, P. D., Williamson, J. R. & Lehmann, R. The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. RNA 3, 1421–1433 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Forristall, C., Pondel, M., Chen, L. & King, M. L. Patterns of localization and cytoskeletal association of two vegetally localized RNAs, Vg1 and Xcat-2. Development 121, 201–208 (1995).

    CAS  PubMed  Google Scholar 

  43. Kloc, M. & Etkin, L. D. Two distinct pathways for the localization of RNAs at the vegetal cortex in Xenopus oocytes. Development 121, 287–297 (1995).

    CAS  PubMed  Google Scholar 

  44. Evans, T. C., Crittenden, S. L., Kodoyianni, V. & Kimble, J. Translational control of maternal glp-1 mRNA establishes an asymmetry in the C. elegans embryo. Cell 77, 183–194 (1994).

    Article  CAS  Google Scholar 

  45. Kobayashi, S., Kitamura, T., Sasaki, H. & Okada, M. Two types of pole cells are present in the Drosophila embryo, one with and one without splicing activity for the third P-element intron. Development 117, 885–893 (1993).

    CAS  PubMed  Google Scholar 

  46. Thummel, C. S. & Pirrotta, V. New pCaSpeR P element vectors. Drosophila Inf. Serv. 71, 150 (1992).

    Google Scholar 

  47. Spradling, A. C. in Drosophila, A Practical Approach (ed. Roberts, D. B.) 175–197 (IRL, Oxford, 1986).

    Google Scholar 

  48. Bate, M. in The Development of Drosophila melanogaster (eds Bate, M. & Martinez-Arias, A.) 1013–1090 (Cold Spring Harb. Lab. Press, New York, 1993).

    Google Scholar 

Download references

Acknowledgements

We thank R. Lehmann for nosBN, pumFC8 and pumMscflies; S. Larochelle for information about cell-cycle markers; and P. Lasko for comments on the manuscript. This work was supported in part by a Grant-in-aid from the Ministry of Education, Science and Culture, Japan, by the Tsukuba Advanced Research Alliance Project, by the Toray Science Foundation, by the Sumitomo Foundation, by a Research Project for Future Program from the Japan Society for the Promotion of Science, and by the Hayashi Memorial Foundation for Female Natural Scientists.

Correspondence and requests for materials should be addressed to S.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Kobayashi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Asaoka-Taguchi, M., Yamada, M., Nakamura, A. et al. Maternal Pumilio acts together with Nanos in germline development in Drosophila embryos. Nat Cell Biol 1, 431–437 (1999). https://doi.org/10.1038/15666

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15666

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing