Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum

Abstract

The cytosolic coat-protein complex COP-I interacts with cytoplasmic ‘retrieval’ signals present in membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi complex, and is required for both anterograde and retrograde transport in the secretory pathway. Here we study the role of COP-I in Golgi-to-ER transport of several distinct marker molecules. Microinjection of anti-COP-I antibodies inhibits retrieval of the lectin-like molecule ERGIC-53 and of the KDEL receptor from the Golgi to the ER. Transport to the ER of protein toxins, which contain a sequence that is recognized by the KDEL receptor, is also inhibited. In contrast, microinjection of anti-COP-I antibodies or expression of a GTP-restricted Arf-1 mutant does not interfere with Golgi-to-ER transport of Shiga toxin/Shiga-like toxin-1 or with the apparent recycling to the ER of Golgi-resident glycosylation enzymes. Overexpression of a GDP-restricted mutant of Rab6 blocks transport to the ER of Shiga toxin/Shiga-like toxin-1 and glycosylation enzymes, but not of ERGIC-53, the KDEL receptor or KDEL-containing toxins. These data indicate the existence of at least two distinct pathways for Golgi-to-ER transport, one COP-I dependent and the other COP-I independent. The COP-I-independent pathway is specifically regulated by Rab6 and is used by Golgi glycosylation enzymes and Shiga toxin/Shiga-like toxin-1.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Microinjection of anti-EAGE antibody or expression of Arf-1(Q71L) fails to inhibit accumulation of Golgi glycosyltransferases in the ER.
Figure 2: Block of recycling of ERGIC-53 and KDEL receptor upon microinjection of anti-EAGE antibody.
Figure 3: Microinjection of anti-EAGE antibody or an antibody to the cytoplasmic domain of the KDEL receptor reduces the toxicity of Pseudomonas exotoxin but not of SLT-1.
Figure 4: Retrograde transport of Shiga toxin B-fragment to the ER is not blocked by anti-EAGE Fab fragments.
Figure 5: Overexpression of Rab6-GDP blocks retrograde transport of Shiga toxin B-fragment from the Golgi to the ER.
Figure 6: Localization of Shiga toxin B-fragment in Rab6-GDP-injected cells.
Figure 7: Preexpression of Rab6-GDP but not Rab6-GTP blocks the Sar1dn-induced accumulation of GalNAc-T2GFP but not ERGIC-53 in the ER.

References

  1. 1

    Rothman, J. E. The Golgi apparatus: two organelles in tandem. Science 213, 1212–1219 (1981).

  2. 2

    Pelham, H. R. Recycling of proteins between the endoplasmic reticulum and Golgi complex . Curr. Opin. Cell Biol. 3, 585– 591 (1991).

  3. 3

    Munro, S. & Pelham, H. R. A C-terminal signal prevents secretion of luminal ER proteins. Cell 48, 899– 907 (1987).

  4. 4

    Nilsson, T., Jackson, M. & Peterson, P. A. Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell 58, 707–718 (1989).

  5. 5

    Jackson, M. R., Nilsson, T. & Peterson, P. A. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 9, 3153–3162 ( 1990).

  6. 6

    Schindler, R., Itin, C., Zerial, M., Lottspeich, F. & Hauri, H. P. ERGIC-53, a membrane protein of the ER-Golgi intermediate compartment, carries an ER retention motif. Eur. J. Cell Biol. 61, 1–9 (1993 ).

  7. 7

    Sohn, K. et al. A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding. J. Cell Biol. 135, 1239–1248 (1996).

  8. 8

    Rojo, M. et al. Involvement of the transmembrane protein p23 in biosynthetic protein transport. J. Cell Biol. 139, 1119– 1135 (1997).

  9. 9

    Dominguez, M. et al. gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COPI and II coatomer. J. Cell Biol. 140, 751–765 (1998).

  10. 10

    Cosson, P. & Letourneur, F. Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263 , 1629–1631 (1994).

  11. 11

    Letourneur, F. et al. Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 79, 1199 –1207 (1994).

  12. 12

    Bremser, M. et al. Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96, 495 –506 (1999).

  13. 13

    Cosson, P., Demolliere, C., Hennecke, S., Duden, R. & Letourneur, F. δ- and ζ-COP, two coatomer subunits homologous to clathrin- associated proteins, are involved in ER retrieval . EMBO J. 15, 1792–1798 (1996).

  14. 14

    Sandvig, K. et al. Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature 358, 510– 512 (1992).

  15. 15

    Johannes, L., Tenza, D., Antony, C. & Goud, B. Retrograde transport of KDEL-bearing B-fragment of Shiga toxin. J. Biol. Chem. 272, 19554–19561 (1997).

  16. 16

    Mallard, F. et al. Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of shiga toxin B-fragment transport. J. Cell Biol. 143, 973–990 (1998).

  17. 17

    Majoul, I. et al. KDEL receptor (Erd2p)-mediated retrograde transport of the cholera toxin A subunit from the Golgi involves COPI, p23, and the COOH terminus of Erd2p. J. Cell Biol. 143, 601– 612 (1998).

  18. 18

    Jackson, M. E. et al. The KDEL retrieval system is exploited by Pseudomonas exotoxin A, but not by Shiga-like toxin-1, during retrograde transport from the Golgi complex to the endoplasmic reticulum. J. Cell Sci. 112, 467–475 (1999).

  19. 19

    Johannes, L. & Goud, B. Surfing on a retrograde wave: how does Shiga toxin reach the endoplasmic reticulum? Trends Cell Biol. 8, 158–162 ( 1998).

  20. 20

    Miesenbock, G. & Rothman, J. E. The capacity to retrieve escaped ER proteins extends to the trans-most cisterna of the Golgi stack. J. Cell Biol. 129, 309 –319 (1995).

  21. 21

    Lanoix, J. et al. GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COPI vesicles. EMBO J. 18, 4949–4960 ( 1999).

  22. 22

    Rabouille, C. et al. Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J. Cell Sci. 108, 1617–1627 (1995).

  23. 23

    Röttger, S. et al. Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. J. Cell Sci. 111, 45– 60 (1998).

  24. 24

    Johnston, P. A., Stieber, A. & Gonatas, N. K. A hypothesis on the traffic of MG160, a medial Golgi sialoglycoprotein, from the trans-Golgi network to the Golgi cisternae. J. Cell Sci. 107, 529– 537 (1994).

  25. 25

    Storrie, B. et al. Recycling of Golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J. Cell Biol. 143, 1505 –1521 (1998).

  26. 26

    Kuge, O. et al. Sar1 promotes vesicle budding from the endoplasmic reticulum but not Golgi compartments. J. Cell Biol. 125, 51–65 (1994).

  27. 27

    Aridor, M., Bannykh, S. I., Rowe, T. & Balch, W. E. Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport . J. Cell Biol. 131, 875– 893 (1995).

  28. 28

    Cole, N. B., Ellenberg, J., Song, J., DiEuliis, D. & Lippincott-Schwartz, J. Retrograde transport of Golgi-localized proteins to the ER. J. Cell Biol. 140, 1 –15 (1998).

  29. 29

    Shima, D. T., Cabrera-Poch, N., Pepperkok, R. & Warren, G. An ordered inheritance strategy for the Golgi apparatus: visualization of mitotic disassembly reveals a role for the mitotic spindle. J. Cell Biol. 141, 955–966 (1998).

  30. 30

    Pepperkok, R., Lowe, M., Burke, B. & Kreis, T. E. Three distinct steps in transport of vesicular stomatitis virus glycoprotein from the ER to the cell surface in vivo with differential sensitivities to GTPγS . J. Cell Sci. 111, 1877– 1888 (1998).

  31. 31

    Pepperkok, R. et al. β-COPIs essential for biosynthetic membrane transport from the endoplasmic reticulum to the Golgi complex in vivo. Cell 74, 71–82 ( 1993).

  32. 32

    Scheel, J., Pepperkok, R., Lowe, M., Griffiths, G. & Kreis, T. E. Dissociation of coatomer from membranes is required for brefeldin A-induced transfer of Golgi enzymes to the endoplasmic reticulum . J. Cell Biol. 137, 319– 333 (1997).

  33. 33

    Schweizer, A., Ericsson, M., Bachi, T., Griffiths, G. & Hauri, H. P. Characterization of a novel 63 kDa membrane protein. Implications for the organization of the ER-to-Golgi pathway. J. Cell Sci. 104, 671–683 (1993).

  34. 34

    Dascher, C. & Balch, W. E. Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J. Biol. Chem. 269, 1437–1448 (1994).

  35. 35

    Lord, J. M. & Roberts, L. M. Toxin entry: retrograde transport through the secretory pathway. J. Cell Biol. 140, 733–736 (1998).

  36. 36

    Sandvig, K. & van Deurs, B. Endocytosis and intracellular transport of ricin: recent discoveries. FEBS Lett. 452, 67–70 (1999).

  37. 37

    Sandvig, K. et al. Retrograde transport from the Golgi complex to the ER of both Shiga toxin and the nontoxic Shiga B-fragment is regulated by butyric acid and cAMP. J. Cell Biol. 126, 53– 64 (1994).

  38. 38

    Nakamura, N. et al. Characterization of a cis-Golgi matrix protein, GM130 . J. Cell Biol. 131, 1715– 1726 (1995).

  39. 39

    Martinez, O. et al. The small GTP-binding protein rab6 functions in intra-Golgi transport. J. Cell Biol. 127, 1575– 1588 (1994).

  40. 40

    Martinez, O. et al. GTP-bound forms of rab6 induce the redistribution of Golgi proteins into the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 94, 1828–1833 ( 1997).

  41. 41

    Simonsen, A. et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394, 494– 498 (1998).

  42. 42

    Gaynor, E. C., te Heesen, S., Graham, T. R., Aebi, M. & Emr, S. D. Signal-mediated retrieval of a membrane protein from the Golgi to the ER in yeast. J. Cell Biol. 127, 653–665 (1994).

  43. 43

    Teal, S. B., Hsu, V. W., Peters, P. J., Klausner, R. D. & Donaldson, J. G. An activating mutation in ARF1 stabilizes coatomer binding to Golgi membranes. J. Biol. Chem. 269, 3135–3138 ( 1994).

  44. 44

    Sata, M., Moss, J. & Vaughan, M. Structural basis for the inhibitory effect of brefeldin A on guanine nucleotide-exchange proteins for ADP-ribosylation factors. Proc. Natl Acad. Sci. USA 96, 2752– 2757 (1999).

  45. 45

    Lippincott-Schwartz, J. Membrane cycling between the ER and Golgi apparatus and its role in biosynthetic transport. Subcell. Biochem. 21, 95– 119 (1993).

  46. 46

    Kartenbeck, J., Stukenbrok, H. & Helenius, A. Endocytosis of simian virus 40 into the endoplasmic reticulum. J. Cell Biol. 109, 2721– 2729 (1989).

  47. 47

    Tang, B. L., Wong, S. H., Qi, X. L., Low, S. H. & Hong, W. Molecular cloning, characterization, subcellular localization and dynamics of p23, the mammalian KDEL receptor. J. Cell Biol. 120, 325–328 ( 1993).

  48. 48

    Schweizer, A., Fransen, J. A., Bachi, T., Ginsel, L. & Hauri, H. P. Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J. Cell Biol. 107, 1643–1653 (1988).

  49. 49

    Kreis, T. E. Microinjected antibodies against the cytoplasmic domain of vesicular stomatitis virus glycoprotein block its transport to the cell surface. EMBO J. 5, 931–941 ( 1986).

  50. 50

    Palmer, D. J., Helms, J. B., Beckers, C. J., Orci, L. & Rothman, J. E. Binding of coatomer to Golgi membranes requires ADP-ribosylation factor. J. Biol. Chem. 268, 12083–12089 (1993).

  51. 51

    White, J. et al. Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J. Cell Biol. (in the press).

Download references

Acknowledgements

We thank Leica Lasertechnik (Heidelberg, Germany), C. Zeiss (Jena, Germany), T.I.L.L. Photonics (Martinsried, Germany), Olympus Optical Co. (Hamburg, Germany), Eppendorf (Hamburg, Germany), Hamamatsu Photonics (Hamamatsu City, Japan) and Improvision (Coventry, UK) for their continued support of the Advanced Light Microscopy Facility (EMBL, Heidelberg, Germany). We also thank the following people for providing reagents: H.-P. Hauri for monoclonal antibodies to ERGIC-53 and p63; B. Luen Tang and W. Hong for monoclonal antibodies to the KDEL receptor; M. Lowe for polyclonal antibodies to GM130; the Zerial laboratory for anti-EEA1 human sera; S. Fuller for monoclonal antibody to PDI; and W. Balch for the cDNA encoding Sar1dn. This work was supported in part by grants to the individual laboratories and by a grant to B.S. from the Fogarty International Center, US NIH, while he was on sabbatical in T.N.’s laboratory. A.G. was financed in part by an ICRF postdoctoral fellowship.

Correspondence and requests for materials should be addressed to T.N. or R.P.

Author information

Correspondence to Tommy Nilsson or Rainer Pepperkok.

Rights and permissions

Reprints and Permissions

About this article

  • Received

  • Revised

  • Accepted

  • Published

  • Issue Date

  • DOI

    https://doi.org/10.1038/15658

Further reading