Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum

Abstract

The cytosolic coat-protein complex COP-I interacts with cytoplasmic ‘retrieval’ signals present in membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi complex, and is required for both anterograde and retrograde transport in the secretory pathway. Here we study the role of COP-I in Golgi-to-ER transport of several distinct marker molecules. Microinjection of anti-COP-I antibodies inhibits retrieval of the lectin-like molecule ERGIC-53 and of the KDEL receptor from the Golgi to the ER. Transport to the ER of protein toxins, which contain a sequence that is recognized by the KDEL receptor, is also inhibited. In contrast, microinjection of anti-COP-I antibodies or expression of a GTP-restricted Arf-1 mutant does not interfere with Golgi-to-ER transport of Shiga toxin/Shiga-like toxin-1 or with the apparent recycling to the ER of Golgi-resident glycosylation enzymes. Overexpression of a GDP-restricted mutant of Rab6 blocks transport to the ER of Shiga toxin/Shiga-like toxin-1 and glycosylation enzymes, but not of ERGIC-53, the KDEL receptor or KDEL-containing toxins. These data indicate the existence of at least two distinct pathways for Golgi-to-ER transport, one COP-I dependent and the other COP-I independent. The COP-I-independent pathway is specifically regulated by Rab6 and is used by Golgi glycosylation enzymes and Shiga toxin/Shiga-like toxin-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microinjection of anti-EAGE antibody or expression of Arf-1(Q71L) fails to inhibit accumulation of Golgi glycosyltransferases in the ER.
Figure 2: Block of recycling of ERGIC-53 and KDEL receptor upon microinjection of anti-EAGE antibody.
Figure 3: Microinjection of anti-EAGE antibody or an antibody to the cytoplasmic domain of the KDEL receptor reduces the toxicity of Pseudomonas exotoxin but not of SLT-1.
Figure 4: Retrograde transport of Shiga toxin B-fragment to the ER is not blocked by anti-EAGE Fab fragments.
Figure 5: Overexpression of Rab6-GDP blocks retrograde transport of Shiga toxin B-fragment from the Golgi to the ER.
Figure 6: Localization of Shiga toxin B-fragment in Rab6-GDP-injected cells.
Figure 7: Preexpression of Rab6-GDP but not Rab6-GTP blocks the Sar1dn-induced accumulation of GalNAc-T2GFP but not ERGIC-53 in the ER.

Similar content being viewed by others

References

  1. Rothman, J. E. The Golgi apparatus: two organelles in tandem. Science 213, 1212–1219 (1981).

    Article  CAS  Google Scholar 

  2. Pelham, H. R. Recycling of proteins between the endoplasmic reticulum and Golgi complex . Curr. Opin. Cell Biol. 3, 585– 591 (1991).

    Article  CAS  Google Scholar 

  3. Munro, S. & Pelham, H. R. A C-terminal signal prevents secretion of luminal ER proteins. Cell 48, 899– 907 (1987).

    Article  CAS  Google Scholar 

  4. Nilsson, T., Jackson, M. & Peterson, P. A. Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell 58, 707–718 (1989).

    Article  CAS  Google Scholar 

  5. Jackson, M. R., Nilsson, T. & Peterson, P. A. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 9, 3153–3162 ( 1990).

    Article  CAS  Google Scholar 

  6. Schindler, R., Itin, C., Zerial, M., Lottspeich, F. & Hauri, H. P. ERGIC-53, a membrane protein of the ER-Golgi intermediate compartment, carries an ER retention motif. Eur. J. Cell Biol. 61, 1–9 (1993 ).

    CAS  PubMed  Google Scholar 

  7. Sohn, K. et al. A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding. J. Cell Biol. 135, 1239–1248 (1996).

    Article  CAS  Google Scholar 

  8. Rojo, M. et al. Involvement of the transmembrane protein p23 in biosynthetic protein transport. J. Cell Biol. 139, 1119– 1135 (1997).

    Article  CAS  Google Scholar 

  9. Dominguez, M. et al. gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COPI and II coatomer. J. Cell Biol. 140, 751–765 (1998).

    Article  CAS  Google Scholar 

  10. Cosson, P. & Letourneur, F. Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science 263 , 1629–1631 (1994).

    Article  CAS  Google Scholar 

  11. Letourneur, F. et al. Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell 79, 1199 –1207 (1994).

    Article  CAS  Google Scholar 

  12. Bremser, M. et al. Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96, 495 –506 (1999).

    Article  CAS  Google Scholar 

  13. Cosson, P., Demolliere, C., Hennecke, S., Duden, R. & Letourneur, F. δ- and ζ-COP, two coatomer subunits homologous to clathrin- associated proteins, are involved in ER retrieval . EMBO J. 15, 1792–1798 (1996).

    Article  CAS  Google Scholar 

  14. Sandvig, K. et al. Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature 358, 510– 512 (1992).

    Article  CAS  Google Scholar 

  15. Johannes, L., Tenza, D., Antony, C. & Goud, B. Retrograde transport of KDEL-bearing B-fragment of Shiga toxin. J. Biol. Chem. 272, 19554–19561 (1997).

    Article  CAS  Google Scholar 

  16. Mallard, F. et al. Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of shiga toxin B-fragment transport. J. Cell Biol. 143, 973–990 (1998).

    Article  CAS  Google Scholar 

  17. Majoul, I. et al. KDEL receptor (Erd2p)-mediated retrograde transport of the cholera toxin A subunit from the Golgi involves COPI, p23, and the COOH terminus of Erd2p. J. Cell Biol. 143, 601– 612 (1998).

    Article  CAS  Google Scholar 

  18. Jackson, M. E. et al. The KDEL retrieval system is exploited by Pseudomonas exotoxin A, but not by Shiga-like toxin-1, during retrograde transport from the Golgi complex to the endoplasmic reticulum. J. Cell Sci. 112, 467–475 (1999).

    CAS  PubMed  Google Scholar 

  19. Johannes, L. & Goud, B. Surfing on a retrograde wave: how does Shiga toxin reach the endoplasmic reticulum? Trends Cell Biol. 8, 158–162 ( 1998).

    Article  CAS  Google Scholar 

  20. Miesenbock, G. & Rothman, J. E. The capacity to retrieve escaped ER proteins extends to the trans-most cisterna of the Golgi stack. J. Cell Biol. 129, 309 –319 (1995).

    Article  CAS  Google Scholar 

  21. Lanoix, J. et al. GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COPI vesicles. EMBO J. 18, 4949–4960 ( 1999).

    Article  Google Scholar 

  22. Rabouille, C. et al. Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides. J. Cell Sci. 108, 1617–1627 (1995).

    CAS  PubMed  Google Scholar 

  23. Röttger, S. et al. Localization of three human polypeptide GalNAc-transferases in HeLa cells suggests initiation of O-linked glycosylation throughout the Golgi apparatus. J. Cell Sci. 111, 45– 60 (1998).

    PubMed  Google Scholar 

  24. Johnston, P. A., Stieber, A. & Gonatas, N. K. A hypothesis on the traffic of MG160, a medial Golgi sialoglycoprotein, from the trans-Golgi network to the Golgi cisternae. J. Cell Sci. 107, 529– 537 (1994).

    CAS  PubMed  Google Scholar 

  25. Storrie, B. et al. Recycling of Golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J. Cell Biol. 143, 1505 –1521 (1998).

    Article  CAS  Google Scholar 

  26. Kuge, O. et al. Sar1 promotes vesicle budding from the endoplasmic reticulum but not Golgi compartments. J. Cell Biol. 125, 51–65 (1994).

    Article  CAS  Google Scholar 

  27. Aridor, M., Bannykh, S. I., Rowe, T. & Balch, W. E. Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport . J. Cell Biol. 131, 875– 893 (1995).

    Article  CAS  Google Scholar 

  28. Cole, N. B., Ellenberg, J., Song, J., DiEuliis, D. & Lippincott-Schwartz, J. Retrograde transport of Golgi-localized proteins to the ER. J. Cell Biol. 140, 1 –15 (1998).

    Article  CAS  Google Scholar 

  29. Shima, D. T., Cabrera-Poch, N., Pepperkok, R. & Warren, G. An ordered inheritance strategy for the Golgi apparatus: visualization of mitotic disassembly reveals a role for the mitotic spindle. J. Cell Biol. 141, 955–966 (1998).

    Article  CAS  Google Scholar 

  30. Pepperkok, R., Lowe, M., Burke, B. & Kreis, T. E. Three distinct steps in transport of vesicular stomatitis virus glycoprotein from the ER to the cell surface in vivo with differential sensitivities to GTPγS . J. Cell Sci. 111, 1877– 1888 (1998).

    CAS  PubMed  Google Scholar 

  31. Pepperkok, R. et al. β-COPIs essential for biosynthetic membrane transport from the endoplasmic reticulum to the Golgi complex in vivo. Cell 74, 71–82 ( 1993).

    Article  CAS  Google Scholar 

  32. Scheel, J., Pepperkok, R., Lowe, M., Griffiths, G. & Kreis, T. E. Dissociation of coatomer from membranes is required for brefeldin A-induced transfer of Golgi enzymes to the endoplasmic reticulum . J. Cell Biol. 137, 319– 333 (1997).

    Article  CAS  Google Scholar 

  33. Schweizer, A., Ericsson, M., Bachi, T., Griffiths, G. & Hauri, H. P. Characterization of a novel 63 kDa membrane protein. Implications for the organization of the ER-to-Golgi pathway. J. Cell Sci. 104, 671–683 (1993).

    CAS  PubMed  Google Scholar 

  34. Dascher, C. & Balch, W. E. Dominant inhibitory mutants of ARF1 block endoplasmic reticulum to Golgi transport and trigger disassembly of the Golgi apparatus. J. Biol. Chem. 269, 1437–1448 (1994).

    CAS  PubMed  Google Scholar 

  35. Lord, J. M. & Roberts, L. M. Toxin entry: retrograde transport through the secretory pathway. J. Cell Biol. 140, 733–736 (1998).

    Article  CAS  Google Scholar 

  36. Sandvig, K. & van Deurs, B. Endocytosis and intracellular transport of ricin: recent discoveries. FEBS Lett. 452, 67–70 (1999).

    Article  CAS  Google Scholar 

  37. Sandvig, K. et al. Retrograde transport from the Golgi complex to the ER of both Shiga toxin and the nontoxic Shiga B-fragment is regulated by butyric acid and cAMP. J. Cell Biol. 126, 53– 64 (1994).

    Article  CAS  Google Scholar 

  38. Nakamura, N. et al. Characterization of a cis-Golgi matrix protein, GM130 . J. Cell Biol. 131, 1715– 1726 (1995).

    Article  CAS  Google Scholar 

  39. Martinez, O. et al. The small GTP-binding protein rab6 functions in intra-Golgi transport. J. Cell Biol. 127, 1575– 1588 (1994).

    Article  CAS  Google Scholar 

  40. Martinez, O. et al. GTP-bound forms of rab6 induce the redistribution of Golgi proteins into the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 94, 1828–1833 ( 1997).

    Article  CAS  Google Scholar 

  41. Simonsen, A. et al. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394, 494– 498 (1998).

    Article  CAS  Google Scholar 

  42. Gaynor, E. C., te Heesen, S., Graham, T. R., Aebi, M. & Emr, S. D. Signal-mediated retrieval of a membrane protein from the Golgi to the ER in yeast. J. Cell Biol. 127, 653–665 (1994).

    Article  CAS  Google Scholar 

  43. Teal, S. B., Hsu, V. W., Peters, P. J., Klausner, R. D. & Donaldson, J. G. An activating mutation in ARF1 stabilizes coatomer binding to Golgi membranes. J. Biol. Chem. 269, 3135–3138 ( 1994).

    CAS  PubMed  Google Scholar 

  44. Sata, M., Moss, J. & Vaughan, M. Structural basis for the inhibitory effect of brefeldin A on guanine nucleotide-exchange proteins for ADP-ribosylation factors. Proc. Natl Acad. Sci. USA 96, 2752– 2757 (1999).

    Article  CAS  Google Scholar 

  45. Lippincott-Schwartz, J. Membrane cycling between the ER and Golgi apparatus and its role in biosynthetic transport. Subcell. Biochem. 21, 95– 119 (1993).

    Article  CAS  Google Scholar 

  46. Kartenbeck, J., Stukenbrok, H. & Helenius, A. Endocytosis of simian virus 40 into the endoplasmic reticulum. J. Cell Biol. 109, 2721– 2729 (1989).

    Article  CAS  Google Scholar 

  47. Tang, B. L., Wong, S. H., Qi, X. L., Low, S. H. & Hong, W. Molecular cloning, characterization, subcellular localization and dynamics of p23, the mammalian KDEL receptor. J. Cell Biol. 120, 325–328 ( 1993).

    Article  CAS  Google Scholar 

  48. Schweizer, A., Fransen, J. A., Bachi, T., Ginsel, L. & Hauri, H. P. Identification, by a monoclonal antibody, of a 53-kD protein associated with a tubulo-vesicular compartment at the cis-side of the Golgi apparatus. J. Cell Biol. 107, 1643–1653 (1988).

    Article  CAS  Google Scholar 

  49. Kreis, T. E. Microinjected antibodies against the cytoplasmic domain of vesicular stomatitis virus glycoprotein block its transport to the cell surface. EMBO J. 5, 931–941 ( 1986).

    Article  CAS  Google Scholar 

  50. Palmer, D. J., Helms, J. B., Beckers, C. J., Orci, L. & Rothman, J. E. Binding of coatomer to Golgi membranes requires ADP-ribosylation factor. J. Biol. Chem. 268, 12083–12089 (1993).

    CAS  PubMed  Google Scholar 

  51. White, J. et al. Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J. Cell Biol. (in the press).

Download references

Acknowledgements

We thank Leica Lasertechnik (Heidelberg, Germany), C. Zeiss (Jena, Germany), T.I.L.L. Photonics (Martinsried, Germany), Olympus Optical Co. (Hamburg, Germany), Eppendorf (Hamburg, Germany), Hamamatsu Photonics (Hamamatsu City, Japan) and Improvision (Coventry, UK) for their continued support of the Advanced Light Microscopy Facility (EMBL, Heidelberg, Germany). We also thank the following people for providing reagents: H.-P. Hauri for monoclonal antibodies to ERGIC-53 and p63; B. Luen Tang and W. Hong for monoclonal antibodies to the KDEL receptor; M. Lowe for polyclonal antibodies to GM130; the Zerial laboratory for anti-EEA1 human sera; S. Fuller for monoclonal antibody to PDI; and W. Balch for the cDNA encoding Sar1dn. This work was supported in part by grants to the individual laboratories and by a grant to B.S. from the Fogarty International Center, US NIH, while he was on sabbatical in T.N.’s laboratory. A.G. was financed in part by an ICRF postdoctoral fellowship.

Correspondence and requests for materials should be addressed to T.N. or R.P.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tommy Nilsson or Rainer Pepperkok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girod, A., Storrie, B., Simpson, J. et al. Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nat Cell Biol 1, 423–430 (1999). https://doi.org/10.1038/15658

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15658

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing