Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A dermal niche for multipotent adult skin-derived precursor cells

An Addendum to this article was published on 01 May 2005

Abstract

A fundamental question in stem cell research is whether cultured multipotent adult stem cells represent endogenous multipotent precursor cells. Here we address this question, focusing on SKPs, a cultured adult stem cell from the dermis that generates both neural and mesodermal progeny. We show that SKPs derive from endogenous adult dermal precursors that exhibit properties similar to embryonic neural-crest stem cells. We demonstrate that these endogenous SKPs can first be isolated from skin during embryogenesis and that they persist into adulthood, with a niche in the papillae of hair and whisker follicles. Furthermore, lineage analysis indicates that both hair and whisker follicle dermal papillae contain neural-crest-derived cells, and that SKPs from the whisker pad are of neural-crest origin. We propose that SKPs represent an endogenous embryonic precursor cell that arises in peripheral tissues such as skin during development and maintains multipotency into adulthood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SKPs express markers of embryonic neural crest and differentiate into peripheral neurons and Schwann cells.
Figure 2: SKPs migrate like neural crest cells when transplanted in ovo.
Figure 3: Multipotent endogenous SKPs are abundant in skin during late embryogenesis and persist into adulthood.
Figure 4: Expression of SKP transcription factors is localized to the follicle papillae of dorsal hair follicles and is hair-cycle dependent.
Figure 5: Neural-crest-derived facial dermis dynamically expresses SKP markers, which become progressively restricted to follicle papillae of vibrissae and hair follicles.
Figure 6: Adult whisker papillae contain SKP-like cells.
Figure 7: Hair and whisker follicle papillae contain neural crest-derived cells.
Figure 8: SKPs derived from facial skin are of neural-crest origin.

Similar content being viewed by others

References

  1. Joshi, C. V. & Enver, T. Plasticity revisited. Curr. Opin. Cell Biol. 14, 749–755 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Terada, N. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Alvarez-Dolado, M. et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425, 968–973 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Clarke, D. L. et al. Generalized potential of adult neural stem cells. Science 288, 1660–1663 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Toma, J. G. et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nature Cell Biol. 3, 778–784 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Joannides, A. et al. Efficient generation of neural precursors from adult human skin: astrocytes promote neurogenesis from skin-derived stem cells. Lancet 364, 172–178 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Le Douarin, N. M. The Neural Crest. (Cambridge University Press, Cambridge, UK, 1982).

    Google Scholar 

  10. Ito, C. Y. et al. Hematopoietic stem cell and progenitor defects in Sca-1/Ly-6A-null mice. Blood 101, 517–523 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Asakura, A. Stem cells in adult skeletal muscle. Trends Cardiovasc. Med. 13, 123–128 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Nieto, M. A., Sargent, M. G., Wilkinson, D. G. & Cooke, J. Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 264, 835–839 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Smith, D. E., Franco del Amo, F. & Gridley, T. Isolation of Sna, a mouse gene homologous to the Drosophila genes snail and escargot: its expression pattern suggests multiple roles during postimplantation development. Development 116, 1033–1039 (1992).

    CAS  PubMed  Google Scholar 

  14. Soo, K. et al. Twist function is required for the morphogenesis of the cephalic neural tube and the differentiation of the cranial neural crest cells in the mouse embryo. Dev. Biol. 247, 251–270 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Conway, S. J., Henderson, D. J. & Copp, A. J. Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant. Development 124, 505–514 (1997).

    CAS  PubMed  Google Scholar 

  16. Cheung, M. & Briscoe, J. Neural crest development is regulated by the transcription factor Sox9. Development 130, 5681–5693 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Le Douarin, N. M. & Dupin, E. Cell lineage analysis in neural crest ontogeny. J. Neurobiol. 24, 146–161 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Li, L., Cserjesi, P. & Olson, E. N. Dermo-1: a novel twist-related bHLH protein expressed in the developing dermis. Dev. Biol. 172, 280–292 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Clement-Jones, M. et al. The short stature homeobox gene SHOX is involved in skeletal abnormalities in Turner syndrome. Hum. Mol. Genet. 9, 695–702 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Stemple, D. L. & Anderson, D. J. Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell 71, 973–985 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Monuki, E. S., Weinmaster, G., Kuhn, R. & Lemke G. SCIP: a glial POU domain gene regulated by cyclic AMP. Neuron 3, 783–793 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Hadjantonakis, A. K., Gertsenstein, M., Ikawa, M., Okabe, M. & Nagy, A. Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mech. Dev. 76, 79–90 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. White, PM. & Anderson, D. J. In vivo transplantation of mammalian neural crest cells into chick hosts reveals a new autonomic sublineage restriction. Development 126, 4351–4363 (1999).

    CAS  PubMed  Google Scholar 

  24. Nishimura, E. K. et al. Dominant role for the niche in melanocyte stem-cell fate determination. Nature 416, 854–860 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Nocka, K. et al. Expression of c-kit gene products in known cellular targets of W mutations in normal and W mutant mice — evidence for an impaired c-kit kinase in mutant mice. Genes Dev. 3, 816–826 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Britsch, S. et al. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15, 66–78 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lako, M. et al. Hair follicle dermal cells repopulate the mouse haematopoietic system. J. Cell Sci. 115, 3967–3974 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Jahoda, C. A. B., Whitehouse, C. J., Reynolds, A. J. & Hole, N. Hair follicle dermal cells differentiate into adipogenic and osteogenic lineages. Exp. Dermatol. 12, 849–859 (2003).

    Article  PubMed  Google Scholar 

  29. Paus, R. et al. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J. Invest. Dermatol. 113, 523–32 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. du Cros, D. L., LeBaron, R. G. & Couchman, J. R. Association of versican with dermal matrices and its potential role in hair follicle development and cycling. J. Invest. Dermatol. 105, 426–31 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Kishimoto, J. et al. Selective activation of the versican promoter by epithelial–mesenchymal interactions during hair follicle development. Proc. Natl Acad. Sci. USA 96, 7336–7341 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jensen, P. J. et al. Serpins in the human hair follicle. J. Invest. Dermatol. 114, 917–922 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Panteleyev, A. A. et al. Keratin 17 gene expression during the murine hair cycle. J. Invest. Dermatol. 108, 324–329 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Reddy, S. et al. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech. Dev. 107, 69–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Moll, I., Paus, R., & Moll, R. Merkel cells in mouse skin: intermediate filament pattern, localization, and hair cycle-dependent density. J. Invest. Dermatol. 106, 281–287 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Jiang, X., Rowitch, D. H., Soriano, P., McMahon, A. P. & Sucov, H. M. Fate of the mammalian cardiac neural crest. Development 127, 1607–1616 (2000).

    CAS  PubMed  Google Scholar 

  37. Szeder, V., Grim, M., Halata, Z., Sieber-Blum, M. Neural crest origin of mammalian Merkel cells. Dev. Biol. 253, 258–263 2003.

    Article  CAS  PubMed  Google Scholar 

  38. Fuchs, E. & Raghavan, S. Getting under the skin of epidermal morphogenesis. Nature Rev. Genet. 3, 199–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Botchkareva, N. V., Botchkarev, V. A., Chen, L. H., Lindner, G. & Paus., R. A role for p75 neurotrophin receptor in the control of hair follicle morphogenesis. Dev. Biol. 216, 135–153 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Morrison, S. J., White, P. M., Zock, C. & Anderson, D. J. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96, 737–749 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Peters, E. M. et al. Developmental timing of hair follicle and dorsal skin innervation in mice. J. Comp. Neurol. 448, 28–52 (2002).

    Article  PubMed  Google Scholar 

  42. Miura, M. et al. SHED: stem cells from human exfoliated deciduous teeth. Proc. Natl Acad. Sci. USA 100, 5807–5812 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Reynolds, B. A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Barnabé-Heider, F. & Miller, F. D. Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J. Neurosci. 23, 5149–5160 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mo, R. et al. Specific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development. Development 124, 113–123 (1997).

    CAS  PubMed  Google Scholar 

  46. Mill, P. et al. Sonic hedgehog-dependent activation of Gli2 is essential for embryonic hair follicle development. Genes Dev. 17, 282–294 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, Y., Lyle, S., Yang, Z. & Cotsarelis, G. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J. Invest. Dermatol. 121, 963–968 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Aumont, Y. Wang-Ninio, A. Rioux-Taché for technical support; the Miller and Kaplan laboratories for valuable discussion of this work; and A. Nagy for providing mice. This work was funded by grants from The Canadian Stem Cell Network and the Canadian Institutes of Health Resesarch (CIHR) to F.D.M., from CIHR to C.C.H., from the National Institutes of Health to P.A.L., from the National Sciences and Engineering Council (NSERC) to V.R. and the National Cancer Institute of Canada to D.R.K.. K.J.L.F. was funded by fellowships from the CIHR/Canadian Neurotrauma Research Program and Restracomp, K.M.S. from CIHR and Restracomp, F.B.H. from CIHR, J.B. from the Parkinsons Foundation of Canada and N.R.K. from the Christopher Reeves Paralysis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freda D. Miller.

Ethics declarations

Competing interests

David Kaplan and Freda Miller are consultants for, and shareholders of, Aegera Therapeutics Inc., who have licensed patents dealing with SKPs from their owner, McGill University.

Supplementary information

Supplementary Information, Figures

Fig. S1, Fig. S2, Fig. S3, Fig. S4 (PDF 839 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, K., McKenzie, I., Mill, P. et al. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol 6, 1082–1093 (2004). https://doi.org/10.1038/ncb1181

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing