Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MLK3 is required for mitogen activation of B-Raf, ERK and cell proliferation

Abstract

The ERK group of mitogen-activated protein kinases (MAPKs) is essential for cell proliferation stimulated by mitogens, oncogenic ras and raf (ref. 1). All MAPKs are activated by MAP3K/MEK/MAPK core pathways1 and the Raf proto-oncoproteins, especially B-Raf, are ERK-specific MAP3Ks (refs 13). Mixed lineage kinase-3 (MLK3) is a MAP3K that was thought to be a cytokine-activated, and comparatively selective, regulator of the JNK group of MAPKs (refs 1, 46). Here we report that silencing of mlk3 by RNAi suppressed mitogen and cytokine activation not only of JNK but of ERK and p38 as well. Silencing mlk3 also blocked mitogen-stimulated phosphorylation of B-Raf at Thr 598 and Ser 601, a step required for B-Raf activation7,8. Furthermore, silencing mlk3 prevented serum-stimulated cell proliferation and the proliferation of tumour cells bearing either oncogenic Ki-Ras or loss-of-function neurofibromatosis-1 (NF1) or NF2 mutations. The proliferation of tumour cells containing activating B-raf or raf-1 mutations was unaffected by silencing mlk3. Our results define an unexpected role for MLK3 in mitogen regulation of B-Raf, ERK and cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation of MLK3 by mitogen.
Figure 2: Activation of MAPKs, but not Akt, by mitogens and cytokines requires MLK3.
Figure 3: Activation of B-Raf (by phosphorylation at Thr 598/Ser 601)7,8,9 requires MLK3.
Figure 4: MLK3 is necessary for serum stimulation of cell proliferation.
Figure 5: MLK3 is necessary for maximal proliferation of human tumour cells with activating Ki-ras, but not B-raf, mutations.

Similar content being viewed by others

References

  1. Kyriakis, J.M. in Protein Kinase Functions (ed. Woodgett, J.R.) 40–156 (Oxford University Press, Oxford, 2000).

    Google Scholar 

  2. Wojnowski, L. et al. Endothelial apoptosis in Braf-deficient mice. Nature Genet. 16, 293–297 (1997).

    Article  CAS  Google Scholar 

  3. Wojnowski, L. et al. Overlapping and specific functions of Braf and Craf-1 proto-oncogenes during mouse embryogenesis. Mech. Dev. 91, 97–104 (2000).

    Article  CAS  Google Scholar 

  4. Gallo, K.A. & Johnson, G.L. Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nature Rev. Mol. Cell. Biol. 3, 663–672 (2002).

    Article  CAS  Google Scholar 

  5. Sathyanarayana, P. et al. Activation of the Drosophila MLK by ceramide reveals TNF-α and ceramide as agonists of mammalian MLK3. Mol. Cell 10, 1527–1533 (2002).

    Article  CAS  Google Scholar 

  6. Shen, Y.H. et al. Cross-talk between JNK/SAPK and ERK/MAPK pathways: sustained activation of JNK blocks ERK activation by mitogenic factors. J. Biol. Chem. 278, 26715–26721 (2003).

    Article  CAS  Google Scholar 

  7. Zhang, B.-H. & Guan, K.-L. Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. EMBO J. 19, 5429–5439 (2000).

    Article  CAS  Google Scholar 

  8. Chong, H., Lee, J. & Guan, K.-L. Positive and negative regulation of Raf kinase activity and function by phosphorylation. EMBO J. 20, 3716–3727 (2001).

    Article  CAS  Google Scholar 

  9. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  Google Scholar 

  10. Malumbres, M. & Barbacid, M. RAS oncogenes: the first 30 years. Nature Rev. Cancer 3, 459–465 (2003).

    Article  CAS  Google Scholar 

  11. McCormick, F. Activators and effectors of ras p21 proteins. Curr. Opin. Genet. Dev. 4, 71–76 (1994).

    Article  CAS  Google Scholar 

  12. Marshall, C.J. Ras effectors. Curr. Opin. Cell Biol. 8, 197–204 (1996).

    Article  CAS  Google Scholar 

  13. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer. 3, 11–22 (2003).

    Article  CAS  Google Scholar 

  14. Cichowski, K. & Jacks, T. NF1 tumor suppressor gene function: narrowing the GAP. Cell 104, 593–604 (2001).

    Article  CAS  Google Scholar 

  15. Lynch, T.M. & Gutmann, D.H. Neurofibromatosis 1. 20, 841–865 (2002).

  16. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  17. Chi, J.T. et al. Genomewide view of gene silencing by small interfering RNAs. Proc. Natl Acad. Sci. USA. 100, 6343–6346 (2003).

    Article  CAS  Google Scholar 

  18. Semizarov, D. et al. Specificity of short interfering RNA determined through gene expression signatures. Proc. Natl Acad. Sci. USA. 100, 6347–6352 (2003).

    Article  CAS  Google Scholar 

  19. Kyriakis, J.M. et al. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369, 156–160 (1994).

    Article  CAS  Google Scholar 

  20. Dumitru, C.D. et al. TNF-α induction by LPS is regulated posttranscriptionally via a Tpl-2/ERK-dependent pathway. Cell 103, 1071–1083 (2000).

    Article  CAS  Google Scholar 

  21. Sledz, C.A., Holko, M., de Veer, M.J., Silverman, R.H. & Williams, B.R.G. Activation of the interferon system by short-interfering RNAs. Nature Cell Biol. 5, 834–839 (2003).

    Article  CAS  Google Scholar 

  22. Wan, P.T.C. et al. Mechanism of activation of the Raf-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004).

    Article  CAS  Google Scholar 

  23. Mercer, K.E. & Pritchard, C.A. Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim. Biophys. Acta 1653, 25–40 (2003).

    CAS  PubMed  Google Scholar 

  24. Mansour, S.J. et al. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265, 966–970 (1994).

    Article  CAS  Google Scholar 

  25. Lavoie, J.N., L'Allemain, G., Brunet, A., Müller, R. & Pouysségur, J. Cyclin D1 expression is regulated positively by the p42/p44 MAPK and negatively by the p38/HOG MAPK pathway. J. Biol. Chem. 271, 20608–20616 (1996).

    Article  CAS  Google Scholar 

  26. Brunet, A. et al. Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J. 18, 664–674 (1999).

    Article  CAS  Google Scholar 

  27. Balmanno, K. & Cook, S.J. Sustained MAP kinase activation is required for the expression of cyclin D1, p21 Cip1 and a subset of AP-1 proteins in CCL39 cells. Oncogene 18, 3085–3097 (1999).

    Article  CAS  Google Scholar 

  28. Swenson, K.I., Winkler, K.E. & Means, A.R. A new identity for MLK3 as a NIMA-related, cell cycle-regulated kinase that is localized near centrosomes and influences microtubule organization. Mol. Biol. Cell 14, 156–172 (2003).

    Article  CAS  Google Scholar 

  29. Sherr, C.J. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res. 60, 3689–3695 (2000).

    CAS  Google Scholar 

  30. McClatchey, A.I. Merlin and ERM proteins: unappreciated roles in cancer development? Nature Rev. Cancer 3, 877–883 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Avruch and N. Birnberg for MEK1 cDNA and discussions; A. McLatchey for F3439 cells; A. Guha and J. Fletcher for ST88-14 cells; Q.P. Weng and N. Birnberg for Ki-ras-transformed NIH3T3 cells; A. Agarwal and A. Kuliopulos for SKOV3 cells; R. Gerszten for HUVECs; and M. Comb for anti-p-Thr598/Ser601-B-Raf antibody. This work was supported by grants from the US National Institute of General Medical Sciences and the Arthritis Foundation (to J.M.K.) and the American Heart Association, Massachusetts Chapter (to D.N.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Kyriakis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chadee, D., Kyriakis, J. MLK3 is required for mitogen activation of B-Raf, ERK and cell proliferation. Nat Cell Biol 6, 770–776 (2004). https://doi.org/10.1038/ncb1152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1152

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing