Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pygopus and Legless target Armadillo/β-catenin to the nucleus to enable its transcriptional co-activator function

Abstract

Wnt signalling controls the transcription of genes that function during normal and malignant development1,2. Stimulation by canonical Wnt ligands activates β-catenin (or Drosophila melanogaster Armadillo) by blocking its phosphorylation, resulting in its stabilization and translocation to the nucleus. Here, Armadillo/β-catenin binds to TCF/LEF transcription factors and recruits chromatin-modifying and -remodelling complexes to transcribe Wnt target genes3,4,5,6. The transcriptional activity of Armadillo/β-catenin depends on two conserved nuclear proteins recently discovered in Drosophila, Pygopus (Pygo) and Legless/BCL-9 (Lgs)7,8,9,10. Lgs functions as an adaptor between Pygo and Armadillo/β-catenin7, but how Armadillo/β-catenin is controlled by Pygo and Lgs is not known. Here, we show that the nuclear localization of Lgs entirely depends on Pygo, which itself is constitutively localized to the nucleus; thus, Pygo functions as a nuclear anchor. Pygo is also required for high nuclear Armadillo levels during Wingless signalling, and together with Lgs increases the transcriptional activity of β-catenin in APC mutant cancer cells. Notably, linking Armadillo to a nuclear localization sequence rescues pygo and lgs mutant fly embryos. This indicates that Pygo and Lgs function in targeting Armadillo/β-catenin to the nucleus, thus ensuring its availability to TCF during Wnt signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 4: Co-expressed Pygo and Lgs can increase the nuclear level and function of β-catenin.
Figure 1: In Drosophila, nuclear localization of Lgs depends on pygo, but not vice versa.
Figure 2: Nuclear-cytoplasmic shuttling of Lgs and β-catenin in comparison with Pygo and TCF.
Figure 3: pygo is required for high levels of nuclear Armadillo during Wingless signalling.
Figure 5: NLS–Armadillo bypasses the functions of Pygo and Lgs.

Similar content being viewed by others

References

  1. Cadigan, K.M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  3. Hecht, A., Vleminckx, K., Stemmler, M.P., van Roy, F. & Kemler, R. The p300/CBP acetyltransferases function as transcriptional coactivators of β-catenin in vertebrates. EMBO J. 19, 1839–1850 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Takemaru, K.I. & Moon, R.T. The transcriptional coactivator CBP interacts with β-catenin to activate gene expression. J. Cell Biol. 149, 249–254 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barker, N. et al. The chromatin remodelling factor Brg-1 interacts with β-catenin to promote target gene activation. EMBO J. 20, 4935–4943 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bienz, M. & Clevers, H. Armadillo/β-catenin signals in the nucleus — proof beyond a reasonable doubt? Nature Cell Biol. 5, 179–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Kramps, T. et al. Wnt/wingless signaling requires BCL9/Legless-mediated recruitment of Pygopus to the nuclear β-catenin–TCF complex. Cell 109, 47–60 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Thompson, B., Townsley, F.M., Rosin-Arbesfeld, R., Musisi, H. & Bienz, M. A new nuclear component of the Wnt signalling pathway. Nature Cell Biol. 4, 367–373 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Parker, D.S., Jemison, J. & Cadigan, K.M. Pygopus, a nuclear PHD-finger protein required for Wingless signaling in Drosophila. Development 129, 2565–2576 (2002).

    CAS  PubMed  Google Scholar 

  10. Belenkaya, T.Y. et al. Pygopus encodes a nuclear protein essential for Wingless/Wnt signaling. Development 129, 4089–4101 (2002).

    CAS  PubMed  Google Scholar 

  11. Townsley, F.M., Thompson, B. & Bienz, M. Pygopus residues required for its binding to Legless are critical for transcription and development. J. Biol. Chem. 279, 5177–5183 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Thompson, B.J. A Complex of Armadillo, Legless, and Pygopus coactivates dTCF to activate Wingless target genes. Curr. Biol. 14, 458–466 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Kudo, N. et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242, 540–547 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Fagotto, F., Gluck, U. & Gumbiner, B.M. Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of β-catenin. Curr. Biol. 8, 181–190 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Yokoya, F., Imamoto, N., Tachibana, T. & Yoneda, Y. β-catenin can be transported into the nucleus in a Ran-unassisted manner. Mol. Biol. Cell 10, 1119–1131 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wiechens, N. & Fagotto, F. CRM1- and Ran-independent nuclear export of β-catenin. Curr. Biol. 11, 18–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Rosin-Arbesfeld, R., Cliffe, A., Brabletz, T. & Bienz, M. Nuclear export of the APC tumour suppressor controls β-catenin function in transcription. EMBO J. 22, 1101–1113 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peifer, M. & Wieschaus, E. The segment polarity gene armadillo encodes a functionally modular protein that is the Drosophila homolog of human plakoglobin. Cell 63, 1167–1176 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Peifer, M., Sweeton, D., Casey, M. & Wieschaus, E. Wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo. Development 120, 369–380 (1994).

    CAS  PubMed  Google Scholar 

  20. Tolwinski, N.S. & Wieschaus, E. Armadillo nuclear import is regulated by cytoplasmic anchor Axin and nuclear anchor dTCF/Pan. Development 128, 2107–2117 (2001).

    CAS  PubMed  Google Scholar 

  21. Zecca, M., Basler, K. & Struhl, G. Direct and long-range action of a Wingless morphogen gradient. Cell 87, 833–844 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Rowan, A.J. et al. APC mutations in sporadic colorectal tumors: A mutational 'hotspot' and interdependence of the 'two hits'. Proc. Natl Acad. Sci. USA 97, 3352–3357 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rosin-Arbesfeld, R., Townsley, F. & Bienz, M. The APC tumour suppressor has a nuclear export function. Nature 406, 1009–1012 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, F., White, R.L. & Neufeld, K.L. Cell density and phosphorylation control the subcellular localization of Adenomatous Polyposis Coli protein. Mol. Cell. Biol. 21, 8143–8156 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin–Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Cox, R.T. et al. Membrane-tethered Drosophila Armadillo cannot transduce Wingless signal on its own. Development 126, 1327–1335 (1999).

    CAS  PubMed  Google Scholar 

  27. Miller, J.R. & Moon, R.T. Analysis of the signaling activities of localization mutants of β-catenin during axis specification in Xenopus. J. Cell Biol. 139, 229–243 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pai, L.M., Orsulic, S., Bejsovec, A. & Peifer, M. Negative regulation of Armadillo, a Wingless effector in Drosophila. Development 124, 2255–2266 (1997).

    CAS  PubMed  Google Scholar 

  29. Perrimon, N. The genetic basis of patterned baldness in Drosophila. Cell 76, 781–784 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Kalderon, D., Roberts, B.L., Richardson, W.D. & Smith, A.E. A short amino acid sequence able to specify nuclear location. Cell 39, 499–509 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Hamada, F. et al. Negative regulation of Wingless signaling by D-axin, a Drosophila homolog of axin. Science 283, 1739–1742 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Ahmed, Y., Nouri, A. & Wieschaus, E. Drosophila Apc1 and Apc2 regulate Wingless transduction throughout development. Development 129, 1751–1762 (2002).

    CAS  PubMed  Google Scholar 

  33. Akong, K. et al. Drosophila APC2 and APC1 play overlapping roles in Wingless signaling in the embryo and imaginal discs. Dev. Biol. 250, 91–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Hsu, S.C., Galceran, J. & Grosschedl, R. Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with β-catenin. Mol. Cell. Biol. 18, 4807–4818 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gozani, O. et al. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114, 99–111 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Huh, W.K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Aasland, R., Gibson, T.J. & Stewart, A.F. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci. 20, 56–59 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank K. Basler for Lgs reagents, M. Peifer for the NLS–Armadillo stock, B. Nichols and K. Schmidt for advice with the photobleaching experiments, R. Rosin-Arbesfeld and F. Hamada for plasmids, and B. Thompson, B. Nichols and H. Pelham for discussion and critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariann Bienz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Fig. S1, Fig. S2 and Fig. S3 (PDF 379 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Townsley, F., Cliffe, A. & Bienz, M. Pygopus and Legless target Armadillo/β-catenin to the nucleus to enable its transcriptional co-activator function. Nat Cell Biol 6, 626–633 (2004). https://doi.org/10.1038/ncb1141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing