Article | Published:

Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II


The angiotensin II type 1 (AT1) receptor has a crucial role in load-induced cardiac hypertrophy. Here we show that the AT1 receptor can be activated by mechanical stress through an angiotensin-II-independent mechanism. Without the involvement of angiotensin II, mechanical stress not only activates extracellular-signal-regulated kinases and increases phosphoinositide production in vitro, but also induces cardiac hypertrophy in vivo. Mechanical stretch induces association of the AT1 receptor with Janus kinase 2, and translocation of G proteins into the cytosol. All of these events are inhibited by the AT1 receptor blocker candesartan. Thus, mechanical stress activates AT1 receptor independently of angiotensin II, and this activation can be inhibited by an inverse agonist of the AT1 receptor.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Accession codes



Change history

  • 25 June 2004

    changed 'cardiomycytes' to 'cardiomyocytes'


  1. 1

    Levy, D., Garrison, R.J., Savage, D.D., Kannel, W.B. & Castelli, W.P. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N. Eng. J. Med. 322, 1561–1566 (1990).

  2. 2

    Chien, K.R., Grace, A.A. & Hunter, J.J. Molecular biology of cardiac hypertrophy and heart failure. In Molecular Basis of Cardiovascular Disease (ed. K.R. Chien) 211–250 (W.B. Saunders, Philadelphia, PA, 1998).

  3. 3

    Komuro, I. et al. Stretching cardiac myocytes stimulates protooncogene expression. J. Biol. Chem. 265, 3595–3598 (1990).

  4. 4

    Sadoshima, J., Jahn, L., Takahashi, T., Kulik, T.J. & Izumo, S. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J. Biol. Chem. 267, 10551–10560 (1992).

  5. 5

    Komuro, I. & Yazaki, Y. Control of cardiac gene expression by mechanical stress. Annu. Rev. Physiol. 55, 55–75 (1993).

  6. 6

    Sadoshima, J., Xu, Y., Slayter, H.S. & Izumo, S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75, 977–984 (1993).

  7. 7

    Yamazaki, T. et al. Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Circ. Res. 77, 258–265 (1995).

  8. 8

    Kojima, M. et al. Angiotensin II receptor antagonist TCV-116 induces regression of hypertensive left ventricular hypertrophy in vivo and inhibits the intracellular signaling pathway of stretch-mediated cardiomyocyte hypertrophy in vitro. Circulation 89, 2204–2211 (1994).

  9. 9

    Griendling, K.K., Lassegue, B. & Alexander, R.W. Angiotensin receptors and their therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 36, 281–306 (1996).

  10. 10

    Pitt, B. et al. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial—the Losartan Heart Failure Survival Study ELITE II. Lancet 355, 1582–1587 (2000).

  11. 11

    Cohn, J.N. et al. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Eng. J. Med. 345, 1667–1675 (2001).

  12. 12

    Lindholm, L.H. et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359, 1004–1010 (2002).

  13. 13

    Yamano, Y., Ohyama, K., Chaki, S., Guo, D.F. & Inagami, T. Identification of amino acid residues of rat angiotensin II receptor for ligand binding by site directed mutagenesis. Biochem. Biophys. Res. Comm. 187, 1426–1431 (1992).

  14. 14

    Tanimoto, K. et al. Angiotensinogen-deficient mice with hypotension. J. Biol. Chem. 269, 31334–31337 (1994).

  15. 15

    van Biesen, T., Luttrell, L.M., Hawes, B.E. & Lefkowitz, R.J. Mitogenic signaling via G protein-coupled receptors. Endocr. Rev. 17, 698–714 (1996).

  16. 16

    Rockman, H.A., Koch, W.J. & Lefkowitz, R.J. Seven-transmembrane-spanning receptors and heart function. Nature 415, 206–212 (2002).

  17. 17

    Bockaert, J. & Pin, J.P. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 18, 1723–1729 (1999).

  18. 18

    Yamazaki, T. et al. Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J. Biol. Chem. 271, 3221–3228 (1996).

  19. 19

    Zou, Y. et al. Both Gs and Gi proteins are critically involved in isoproterenol-induced cardiomyocyte hypertrophy. J. Biol. Chem. 274, 9760–9770 (1999).

  20. 20

    Bernstein, K.E. & Alexander, R.W. Counterpoint: molecular analysis of the angiotensin II receptor. Endocr. Rev. 13, 381–386 (1992).

  21. 21

    Inagami, T. Molecular biology and signaling of angiotensin receptors: an overview. J. Am. Soc. Nephrol. 11, S2–S7 (1999).

  22. 22

    Seta, K., Nanamori, M., Modrall, J.G., Neubig, R.R. & Sadoshima, J. AT1 receptor mutant lacking heterotrimeric G protein coupling activates the Src–Ras–ERK pathway without nuclear translocation of ERKs. J. Biol. Chem. 277, 9268–9277 (2002).

  23. 23

    Marrero, M.B. et al. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375, 247–250 (1995).

  24. 24

    Ali, M.S. et al. Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT1 receptor. J. Biol. Chem. 272, 23382–23388 (1997).

  25. 25

    Ali, M.S., Sayeski, P.P. & Bernstein, K.E. Jak2 acts as both a STAT1 kinase and as a molecular bridge linking STAT1 to the angiotensin II AT1 receptor. J. Biol. Chem. 275, 15586–15593 (2000).

  26. 26

    Lee, M.A., Bohm, M., Paul, M. & Ganten, D. Tissue renin–angiotensin systems. Their role in cardiovascular disease. Circulation 87, 7–13 (1993).

  27. 27

    Baker, K.M., Booz, G.W. & Dostal, D.E. Cardiac actions of angiotensin II: role of an intracardiac renin–angiotensin system. Annu. Rev. Physiol. 54, 227–241 (1992).

  28. 28

    Mazzolai, L. et al. Increased cardiac angiotensin II levels induce right and left ventricular hypertrophy in normotensive mice. Hypertension 35, 985–991 (2000).

  29. 29

    Wei, C.C. et al. Differential ANG II generation in plasma and tissue of mice with decrease expression of the ACE gene. Am. J. Physiol. 282, H2254–H2258 (2002).

  30. 30

    Campbell, D.J. et al. Effect of reduced angiotensin-converting enzyme gene expression and angiotensin-converting enzyme inhibition on angiotensin and bradykinin peptide levels in mice. Hypertension 43, 1–6 (2004).

  31. 31

    Knoll, R. et al. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111, 943–955 (2002).

  32. 32

    Brancaccio, M. et al. Melusin, a muscle-specific integrin β1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nature Med. 9, 68–75 (2003).

  33. 33

    Karnik, S.S., Gogonea, C., Patil, S., Saad, Y. & Takezako, T. Activation of G-protein-coupled receptors: a common molecular mechanism. Trends Endocrinol. Metab. 14, 431–437 (2004).

  34. 34

    Akhter, S.A. et al. Targeting the receptor–Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 280, 574–577 (1998).

  35. 35

    Sano, T. et al. A domain for G protein coupling in carboxyl-terminal tail of rat angiotensin II receptor type 1A. J. Biol. Chem. 272, 23631–23636 (1997).

  36. 36

    Lefkowitz, R.J., Cotecchia, S., Samama, P. & Costa, T. Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol. Sci. 14, 303–307 (1993).

  37. 37

    Leurs, R., Smit, M.J., Alewijnse, A.E. & Timmerman, H. Agonist-independent regulation of constitutively active G-protein-coupled receptors. Trends Biochem. Sci. 23, 418–422 (1998).

  38. 38

    Harada, K. et al. Acute pressure overload could induce hypertrophic responses in the heart of angiotensin II type 1a knockout mice. Circ. Res. 82, 779–785 (1998).

  39. 39

    Kudoh, S. et al. Mechanical stretch induces hypertrophic responses in cardiac myocytes of angiotensin II type 1a receptor knockout mice. J. Biol. Chem. 273, 24037–24043 (1998).

  40. 40

    Bader, M. et al. Tissue renin–angiotensin systems: new insights from experimental animal models in hypertension research. J. Mol. Med. 79, 76–102 (2001).

  41. 41

    Ishida, J. et al. Expression and characterization of mouse angiotensin II type 1a receptor tagging hemagglutinin epitope in cultured cells. Int. J. Mol. Med. 3, 263–270 (1999).

  42. 42

    Daaka, Y., Luttrell, L.M. & Lefkowitz, R.J. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 390, 88–91 (1997).

  43. 43

    Sakurai, T. et al. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348, 732–735 (1990).

  44. 44

    Sambrano, G.R. et al. Navigating the signalling network in mouse cardiac myocytes. Nature 420, 712–714 (2002).

  45. 45

    Malhotra, R., Sadoshima, J., Brosius, F.C. & Izumo, S. Mechanical stretch and angiotensin II differentially upregulated the renin–angiotensin system in cardiac myocytes in vitro. Circ. Res. 85, 137–146 (1999).

  46. 46

    Conklin, B.R., Chabre, O., Wong, Y.H., Federman, A.D. & Bourne, H.R. Recombinant Gqα. Mutational activation and coupling to receptors and phospholipase C. J. Biol. Chem. 267, 31–34 (1992)..

  47. 47

    Iiri, T., Bell, S.M., Baranski, T.J., Fujita, T. & Bourne, H.R. A Gsα mutant designed to inhibit receptor signaling through Gs. Proc. Natl. Acad. Sci. USA 96, 499–504 (1999).

  48. 48

    Garcia, P.D., Onrust, R., Bell, S.M., Sakmar, T.P. & Bourne, H.R. Transducin-α C-terminal mutations prevent activation by rhodopsin: a new assay using recombinant proteins expressed in cultured cells. EMBO J. 14, 4460–4469 (1995).

Download references


We thank R. J. Lefkowitz, J. Sadoshima and S. Kimura for plasmids; S.-i. Miura for advice; and A. Okubo, E. Fujita, R. Kobayashi and M. Watanabe for technical support. This work was supported by a Grant-in-Aid for Scientific Research, Developmental Scientific Research, and Scientific Research on Priority Areas from the Ministry of Education, Science, Sports, and Culture; and by a grant for research on life science from Uehara Memorial Foundation, Japan (to I.K.).

Author information

Competing interests

The authors declare no competing financial interests.

Correspondence to Issei Komuro.

Supplementary information

  1. Supplementary Figures and Table (PDF 27 kb)

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: Activation of ERKs by mechanical stretch, AII and conditioned medium.
Figure 2: AII-independent activation of ERKs by mechanical stretch in cells overexpressing AT1 receptors.
Figure 3: Activation of G proteins and Jak2 by mechanical stretch, and their effects on ERK activation.
Figure 4: Mechanical-stretch-stimulated production of inositol phosphates through the AT1 receptor.
Figure 5: Cardiac hypertrophy in ATG−/− mice induced by pressure overload.