Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II

This article has been updated

Abstract

The angiotensin II type 1 (AT1) receptor has a crucial role in load-induced cardiac hypertrophy. Here we show that the AT1 receptor can be activated by mechanical stress through an angiotensin-II-independent mechanism. Without the involvement of angiotensin II, mechanical stress not only activates extracellular-signal-regulated kinases and increases phosphoinositide production in vitro, but also induces cardiac hypertrophy in vivo. Mechanical stretch induces association of the AT1 receptor with Janus kinase 2, and translocation of G proteins into the cytosol. All of these events are inhibited by the AT1 receptor blocker candesartan. Thus, mechanical stress activates AT1 receptor independently of angiotensin II, and this activation can be inhibited by an inverse agonist of the AT1 receptor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation of ERKs by mechanical stretch, AII and conditioned medium.
Figure 2: AII-independent activation of ERKs by mechanical stretch in cells overexpressing AT1 receptors.
Figure 3: Activation of G proteins and Jak2 by mechanical stretch, and their effects on ERK activation.
Figure 4: Mechanical-stretch-stimulated production of inositol phosphates through the AT1 receptor.
Figure 5: Cardiac hypertrophy in ATG−/− mice induced by pressure overload.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Change history

  • 25 June 2004

    changed 'cardiomycytes' to 'cardiomyocytes'

References

  1. Levy, D., Garrison, R.J., Savage, D.D., Kannel, W.B. & Castelli, W.P. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N. Eng. J. Med. 322, 1561–1566 (1990).

    Article  CAS  Google Scholar 

  2. Chien, K.R., Grace, A.A. & Hunter, J.J. Molecular biology of cardiac hypertrophy and heart failure. In Molecular Basis of Cardiovascular Disease (ed. K.R. Chien) 211–250 (W.B. Saunders, Philadelphia, PA, 1998).

    Google Scholar 

  3. Komuro, I. et al. Stretching cardiac myocytes stimulates protooncogene expression. J. Biol. Chem. 265, 3595–3598 (1990).

    CAS  PubMed  Google Scholar 

  4. Sadoshima, J., Jahn, L., Takahashi, T., Kulik, T.J. & Izumo, S. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J. Biol. Chem. 267, 10551–10560 (1992).

    CAS  PubMed  Google Scholar 

  5. Komuro, I. & Yazaki, Y. Control of cardiac gene expression by mechanical stress. Annu. Rev. Physiol. 55, 55–75 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Sadoshima, J., Xu, Y., Slayter, H.S. & Izumo, S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75, 977–984 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Yamazaki, T. et al. Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Circ. Res. 77, 258–265 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Kojima, M. et al. Angiotensin II receptor antagonist TCV-116 induces regression of hypertensive left ventricular hypertrophy in vivo and inhibits the intracellular signaling pathway of stretch-mediated cardiomyocyte hypertrophy in vitro. Circulation 89, 2204–2211 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Griendling, K.K., Lassegue, B. & Alexander, R.W. Angiotensin receptors and their therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 36, 281–306 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Pitt, B. et al. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial—the Losartan Heart Failure Survival Study ELITE II. Lancet 355, 1582–1587 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Cohn, J.N. et al. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N. Eng. J. Med. 345, 1667–1675 (2001).

    Article  CAS  Google Scholar 

  12. Lindholm, L.H. et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359, 1004–1010 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Yamano, Y., Ohyama, K., Chaki, S., Guo, D.F. & Inagami, T. Identification of amino acid residues of rat angiotensin II receptor for ligand binding by site directed mutagenesis. Biochem. Biophys. Res. Comm. 187, 1426–1431 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Tanimoto, K. et al. Angiotensinogen-deficient mice with hypotension. J. Biol. Chem. 269, 31334–31337 (1994).

    CAS  PubMed  Google Scholar 

  15. van Biesen, T., Luttrell, L.M., Hawes, B.E. & Lefkowitz, R.J. Mitogenic signaling via G protein-coupled receptors. Endocr. Rev. 17, 698–714 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Rockman, H.A., Koch, W.J. & Lefkowitz, R.J. Seven-transmembrane-spanning receptors and heart function. Nature 415, 206–212 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Bockaert, J. & Pin, J.P. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 18, 1723–1729 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yamazaki, T. et al. Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J. Biol. Chem. 271, 3221–3228 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Zou, Y. et al. Both Gs and Gi proteins are critically involved in isoproterenol-induced cardiomyocyte hypertrophy. J. Biol. Chem. 274, 9760–9770 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Bernstein, K.E. & Alexander, R.W. Counterpoint: molecular analysis of the angiotensin II receptor. Endocr. Rev. 13, 381–386 (1992).

    CAS  PubMed  Google Scholar 

  21. Inagami, T. Molecular biology and signaling of angiotensin receptors: an overview. J. Am. Soc. Nephrol. 11, S2–S7 (1999).

    Google Scholar 

  22. Seta, K., Nanamori, M., Modrall, J.G., Neubig, R.R. & Sadoshima, J. AT1 receptor mutant lacking heterotrimeric G protein coupling activates the Src–Ras–ERK pathway without nuclear translocation of ERKs. J. Biol. Chem. 277, 9268–9277 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Marrero, M.B. et al. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375, 247–250 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Ali, M.S. et al. Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT1 receptor. J. Biol. Chem. 272, 23382–23388 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Ali, M.S., Sayeski, P.P. & Bernstein, K.E. Jak2 acts as both a STAT1 kinase and as a molecular bridge linking STAT1 to the angiotensin II AT1 receptor. J. Biol. Chem. 275, 15586–15593 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, M.A., Bohm, M., Paul, M. & Ganten, D. Tissue renin–angiotensin systems. Their role in cardiovascular disease. Circulation 87, 7–13 (1993).

    Google Scholar 

  27. Baker, K.M., Booz, G.W. & Dostal, D.E. Cardiac actions of angiotensin II: role of an intracardiac renin–angiotensin system. Annu. Rev. Physiol. 54, 227–241 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Mazzolai, L. et al. Increased cardiac angiotensin II levels induce right and left ventricular hypertrophy in normotensive mice. Hypertension 35, 985–991 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Wei, C.C. et al. Differential ANG II generation in plasma and tissue of mice with decrease expression of the ACE gene. Am. J. Physiol. 282, H2254–H2258 (2002).

    CAS  Google Scholar 

  30. Campbell, D.J. et al. Effect of reduced angiotensin-converting enzyme gene expression and angiotensin-converting enzyme inhibition on angiotensin and bradykinin peptide levels in mice. Hypertension 43, 1–6 (2004).

    Article  Google Scholar 

  31. Knoll, R. et al. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111, 943–955 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Brancaccio, M. et al. Melusin, a muscle-specific integrin β1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nature Med. 9, 68–75 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Karnik, S.S., Gogonea, C., Patil, S., Saad, Y. & Takezako, T. Activation of G-protein-coupled receptors: a common molecular mechanism. Trends Endocrinol. Metab. 14, 431–437 (2004).

    Article  Google Scholar 

  34. Akhter, S.A. et al. Targeting the receptor–Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 280, 574–577 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Sano, T. et al. A domain for G protein coupling in carboxyl-terminal tail of rat angiotensin II receptor type 1A. J. Biol. Chem. 272, 23631–23636 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Lefkowitz, R.J., Cotecchia, S., Samama, P. & Costa, T. Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol. Sci. 14, 303–307 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Leurs, R., Smit, M.J., Alewijnse, A.E. & Timmerman, H. Agonist-independent regulation of constitutively active G-protein-coupled receptors. Trends Biochem. Sci. 23, 418–422 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Harada, K. et al. Acute pressure overload could induce hypertrophic responses in the heart of angiotensin II type 1a knockout mice. Circ. Res. 82, 779–785 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Kudoh, S. et al. Mechanical stretch induces hypertrophic responses in cardiac myocytes of angiotensin II type 1a receptor knockout mice. J. Biol. Chem. 273, 24037–24043 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Bader, M. et al. Tissue renin–angiotensin systems: new insights from experimental animal models in hypertension research. J. Mol. Med. 79, 76–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Ishida, J. et al. Expression and characterization of mouse angiotensin II type 1a receptor tagging hemagglutinin epitope in cultured cells. Int. J. Mol. Med. 3, 263–270 (1999).

    CAS  PubMed  Google Scholar 

  42. Daaka, Y., Luttrell, L.M. & Lefkowitz, R.J. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 390, 88–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Sakurai, T. et al. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348, 732–735 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. Sambrano, G.R. et al. Navigating the signalling network in mouse cardiac myocytes. Nature 420, 712–714 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Malhotra, R., Sadoshima, J., Brosius, F.C. & Izumo, S. Mechanical stretch and angiotensin II differentially upregulated the renin–angiotensin system in cardiac myocytes in vitro. Circ. Res. 85, 137–146 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Conklin, B.R., Chabre, O., Wong, Y.H., Federman, A.D. & Bourne, H.R. Recombinant Gqα. Mutational activation and coupling to receptors and phospholipase C. J. Biol. Chem. 267, 31–34 (1992)..

    CAS  PubMed  Google Scholar 

  47. Iiri, T., Bell, S.M., Baranski, T.J., Fujita, T. & Bourne, H.R. A Gsα mutant designed to inhibit receptor signaling through Gs. Proc. Natl. Acad. Sci. USA 96, 499–504 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garcia, P.D., Onrust, R., Bell, S.M., Sakmar, T.P. & Bourne, H.R. Transducin-α C-terminal mutations prevent activation by rhodopsin: a new assay using recombinant proteins expressed in cultured cells. EMBO J. 14, 4460–4469 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. J. Lefkowitz, J. Sadoshima and S. Kimura for plasmids; S.-i. Miura for advice; and A. Okubo, E. Fujita, R. Kobayashi and M. Watanabe for technical support. This work was supported by a Grant-in-Aid for Scientific Research, Developmental Scientific Research, and Scientific Research on Priority Areas from the Ministry of Education, Science, Sports, and Culture; and by a grant for research on life science from Uehara Memorial Foundation, Japan (to I.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issei Komuro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, Y., Akazawa, H., Qin, Y. et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6, 499–506 (2004). https://doi.org/10.1038/ncb1137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing