Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mitochondrial p53 activates Bak and causes disruption of a Bak–Mcl1 complex

Abstract

The tumour suppressor activity of the p53 protein has been explained by its ability to induce apoptosis in response to a variety of cellular stresses1,2. Thus, understanding the mechanism by which p53 functions in the execution of cell death pathways is of considerable importance in cancer biology. Recent studies have indicated that p53 has a direct signalling role at mitochondria in the induction of apoptosis3,4,5,6, although the mechanisms involved are not completely understood. Here we show that, after cell stress, p53 interacts with the pro-apoptotic mitochondrial membrane protein Bak. Interaction of p53 with Bak causes oligomerization of Bak and release of cytochrome c from mitochondria. Notably, we show that formation of the p53–Bak complex coincides with loss of an interaction between Bak and the anti-apoptotic Bcl2-family member Mcl1. These results are consistent with a model in which p53 and Mcl1 have opposing effects on mitochondrial apoptosis by interacting with, and modulating the activity of, the death effector Bak.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bak and p53 interact.
Figure 2: p53 binds to Bak in vitro.
Figure 3: p53 induces oligomerization of Bak.
Figure 4: Characterization of the Mcl1–Bak interaction.
Figure 5: The p53–Bak interaction correlates with disruption of the Mcl1–Bak interaction.

Similar content being viewed by others

References

  1. Schuler, M. & Green, D.R. Mechanisms of p53-dependent apoptosis. Biochem. Soc. Trans. 29, 684–688 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Vousden, K.H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer 8, 594–604 (2002).

    Article  Google Scholar 

  3. Marchenko, N.D., Zaika, A. & Moll, U.M. Death signal-induced localization of p53 protein to mitochondria: A potential role in apoptotic signaling. J. Biol. Chem. 275, 16202–16212 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Mihara, M. et al. p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11, 577–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Dumont, P., Leu, J.I., Della Pietra III, A.C., George, D.L. & Murphy, M. The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nature Genet. 33, 357–365 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Chipuk, J.E., Maurer, U., Green, D.R. & Schuler, M. Pharmacologic activation of p53 elicits BAX-dependent apoptosis in the absence of transcription. Cancer Cell 4, 371–381 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Beckman, G. et al. Is p53 polymorphism maintained by natural selection? Hum. Hered. 44, 266–270 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Cory, S. & Adams, J.M. The Bcl2 family: regulators of the cellular life-or-death switch. Nature Rev. Cancer 2, 647–656 (2002).

    Article  CAS  Google Scholar 

  9. Murphy, M. et al. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev. 13, 2490–2501 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Horikoshi, N. et al. Two domains of p53 interact with the TATA-binding protein, and the adenovirus 13S E1A protein disrupts the association, relieving p53-mediated transcriptional repression. Mol. Cell. Biol. 15, 227–234 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sattler, M. et al. Structure of Bcl–xL–Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Cheng, E.H., Sheiko, T.V., Fisher, J.K., Craigen, W.J. & Korsmeyer, S.J. VDAC2 inhibits Bak activation and mitochondrial apoptosis. Science 301, 513–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Griffiths, G.J. et al. Cell damage-induced conformational changes of the pro-apoptotic protein Bak in vivo precede the onset of apoptosis. J. Cell Biol. 8, 903–914 (1999).

    Article  Google Scholar 

  14. Wei, M.C. et al. tBID, a membrane-targeted death ligand, oligomerizes Bak to release cytochrome c. Genes Dev. 14, 2060–2071 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wei, M.C. et al. Proapoptotic BAX and Bak: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cuconati, A., Mukherjee, C., Perez, D. & White, E. DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells. Genes Dev. 17, 2922–2932 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ruffolo, S.C. & Shore, G.C. BCL-2 selectively interacts with the BID-induced open conformer of Bak, inhibiting Bak auto-oligomerization. J. Biol. Chem. 278, 25039–25045 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Lindsten, T. et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell. 6, 1389–1399 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheng, E.H. et al. BCL-2, BCL-xL sequester BH3 domain only molecules preventing BAX- and Bak-mediated mitochondrial apoptosis. Mol. Cell 8, 705–511 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Nijhawan, D. et al. Elimination of MCL-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev. 17, 1–12 (2003).

    Article  Google Scholar 

  21. Yang, T., Buchan, H.L., Townsend, K.J. & Craig, R.W. MCL-1, a member of the BCL-2 family, is induced rapidly in response to signals for cell differentiation or death, but not to signals for cell proliferation. J. Cell Physiol. 166, 523–536 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Bae, J., Leo, C.P., Hsu, S.Y. & Hsueh, A.J. MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain. J. Biol. Chem. 275, 25255–25261 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Kaufmann, S.H. et al. Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. Blood 91, 991–1000 (1998).

    CAS  PubMed  Google Scholar 

  24. Craig, R.W. MCL1 provides a window on the role of the BCL2 family in cell proliferation, differentiation and tumorigenesis. Leukemia 16, 444–454 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Vrana, J.A. et al. An MCL1-overexpressing Burkitt lymphoma subline exhibits enhanced survival on exposure to serum deprivation, topoisomerase inhibitors, or staurosporine but remains sensitive to 1-β-D-Arabinofuranosylcytosine. Cancer Research 62, 892–900 (2002).

    CAS  PubMed  Google Scholar 

  26. Chipuk, J.E. et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010–1014 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Jimenez, G.S. et al. A transactivation-deficient mouse model provides insights into Trp53 regulation and function. Nature Genet. 26, 37–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Pallotti, F. & Lenaz, G. Isolation and subfractionation of mitochondria from animal cells and tissue culture lines. Methods Cell Biol. 65, 1–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Bessette, P.H., Aslund, F., Beckwith, J. & Georgiou, G. Efficient folding of proteins with multiple disulfide bonds in Escherichia coli cytoplasm. Proc. Natl Acad. Sci. USA 96, 13703–13708 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsu, Y.T. & Youle, R.J. Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J. Biol. Chem. 273, 10777–10783 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Lindsten and C. Thompson for the Bak+/+ and Bak−/− MEFs, and J. M. Hardwick for Bak and Bax constructs. This work was supported by US Public Health Service National Institutes of Health grants CA089240, CA080854 and 5-T32-HD07516, as well as a grant from the Department of the Army (DAMD-17-02-1-0383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna L. George.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leu, JJ., Dumont, P., Hafey, M. et al. Mitochondrial p53 activates Bak and causes disruption of a Bak–Mcl1 complex. Nat Cell Biol 6, 443–450 (2004). https://doi.org/10.1038/ncb1123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1123

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing