Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p

Abstract

The GTPase Arl3p is required to recruit a second GTPase, Arl1p, to the Golgi in Saccharomyces cerevisiae. Arl1p binds to the GRIP domain, which is present in a number of long coiled-coil proteins or 'golgins'. Here we show that Arl3p is not myristoylated like most members of the Arf family, but is instead amino-terminally acetylated by the NatC complex. Targeting of Arl3p also requires a Golgi membrane protein Sys1p. The human homologues of Arl3p (Arf-related protein 1 (ARFRP1)) and Sys1p (hSys1) can be isolated in a complex after chemical cross-linking. This suggests that the targeting of ARFRP1/Arl3p to the Golgi is mediated by a direct interaction between its acetylated N terminus and Sys1p/hSys1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The NatC complex is required for Golgi localization of Imh1p, Arllp and Arl3p.
Figure 2: The N-terminal acetyltransferase activity of NatC is required for Arl3p activity.
Figure 3: The N terminus of Arl3p is acetylated in wild-type, but not in Δmak3, yeast.
Figure 4: Sys1p is required for the Golgi localization of Arl3p.
Figure 5: ARFRP1 and hSys1 are localized to the Golgi.
Figure 6: The N terminus of ARFRP1 is required for recruitment by hSys1.
Figure 7: Coprecipitation of hSys1 with ARFRP1 after chemical cross-linking.

Similar content being viewed by others

References

  1. Takai, Y., Sasaki, T. & Matozaki, T. Small GTP-binding proteins. Physiol. Rev. 81, 153–208 (2001).

    Article  CAS  Google Scholar 

  2. Pfeffer, S.R. Transport-vesicle targeting: tethers before SNAREs. Nature Cell Biol. 1, E17–E22 (1999).

    Article  CAS  Google Scholar 

  3. Gillingham, A.K. & Munro, S. Long coiled-coil proteins and membrane traffic. Biochim. Biophys. Acta 1641, 71–85 (2003).

    Article  CAS  Google Scholar 

  4. Whyte, J.R. & Munro, S. Vesicle tethering complexes in membrane traffic. J. Cell Sci. 115, 2627–2637 (2002).

    CAS  PubMed  Google Scholar 

  5. Pasqualato, S., Renault, L. & Cherfils, J. Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for 'front-back' communication. EMBO Rep. 3, 1035–1041 (2002).

    Article  CAS  Google Scholar 

  6. Beraud-Dufour, S., Paris, S., Chabre, M. & Antonny, B. Dual interaction of ADP ribosylation factor 1 with Sec7 domain and with lipid membranes during catalysis of guanine nucleotide exchange. J. Biol. Chem. 274, 37629–37636 (1999).

    Article  CAS  Google Scholar 

  7. Mossessova, E., Corpina, R.A. & Goldberg, J. Crystal structure of ARF1–Sec7 complexed with Brefeldin A and its implications for the guanine nucleotide exchange mechanism. Mol. Cell 12, 1403–1411 (2003).

    Article  CAS  Google Scholar 

  8. Renault, L., Guibert, B. & Cherfils, J. Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor. Nature 426, 525–530 (2003).

    Article  CAS  Google Scholar 

  9. Gangi Setty, S.R., Shin, M.E., Yoshino, A., Marks, M.S. & Burd, C.G. Golgi recruitment of GRIP domain proteins by Arf-like GTPase 1 (Arl1p) is regulated by the Arf-like GTPase 3 (Arl3p). Curr. Biol. 13, 401–404 (2003).

    Article  Google Scholar 

  10. Lu, L. & Hong, W. Interaction of Arl1-GTP with GRIP domains recruits autoantigens Golgin-97 and Golgin-245/p230 onto the Golgi. Mol. Biol. Cell 14, 3767–3781 (2003).

    Article  CAS  Google Scholar 

  11. Panic, B., Perisic, O., Veprintsev, D.B., Williams, R.L. & Munro, S. Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus. Mol. Cell 12, 863–874 (2003).

    Article  CAS  Google Scholar 

  12. Panic, B., Whyte, J.R. & Munro, S. The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr. Biol. 13, 405–410 (2003).

    Article  CAS  Google Scholar 

  13. Lu, L., Horstmann, H., Ng, C. & Hong, W. Regulation of Golgi structure and function by ARF-like protein 1 (Arl1). J. Cell Sci. 114, 4543–4555 (2001).

    CAS  PubMed  Google Scholar 

  14. Van Valkenburgh, H., Shern, J.F., Sharer, J.D., Zhu, X. & Kahn, R.A. ADP-ribosylation factors (ARFs) and ARF-like 1 (ARL1) have both specific and shared effectors: characterizing ARL1-binding proteins. J. Biol. Chem. 276, 22826–22837 (2001).

    Article  CAS  Google Scholar 

  15. Maurer-Stroh, S., Eisenhaber, B. & Eisenhaber, F. N-terminal N-myristoylation of proteins: refinement of the sequence motif and its taxon-specific differences. J. Mol. Biol. 317, 523–540 (2002).

    Article  CAS  Google Scholar 

  16. Kimura, Y. et al. Nα-acetylation and proteolytic activity of the yeast 20 S proteasome. J. Biol. Chem. 275, 4635–4639 (2000).

    Article  CAS  Google Scholar 

  17. Polevoda, B. & Sherman, F. N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J. Mol. Biol. 325, 595–622 (2003).

    Article  CAS  Google Scholar 

  18. Tsukada, M. & Gallwitz, D. Isolation and characterization of SYS genes from yeast, multicopy suppressors of the functional loss of the transport GTPase Ypt6p. J. Cell Sci. 109, 2471–2481 (1996).

    CAS  PubMed  Google Scholar 

  19. Siniossoglou, S., Peak-Chew, S.Y. & Pelham, H.R. Ric1p and Rgp1p form a complex that catalyses nucleotide exchange on Ypt6p. EMBO J. 19, 4885–4894 (2000).

    Article  CAS  Google Scholar 

  20. Li, B. & Warner, J.R. Mutation of the Rab6 homologue of Saccharomyces cerevisiae, YPT6, inhibits both early Golgi function and ribosome biosynthesis. J. Biol. Chem. 271, 16813–16819 (1996).

    Article  CAS  Google Scholar 

  21. Tsukada, M., Will, E. & Gallwitz, D. Structural and functional analysis of a novel coiled-coil protein involved in Ypt6 GTPase-regulated protein transport in yeast. Mol. Biol. Cell 10, 63–75 (1999).

    Article  CAS  Google Scholar 

  22. Whyte, J.R. & Munro, S. The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev. Cell 1, 527–537 (2001).

    Article  CAS  Google Scholar 

  23. Polevoda, B. & Sherman, F. NatC Nα-terminal acetyltransferase of yeast contains three subunits, Mak3p, Mak10p, and Mak31p. J. Biol. Chem. 276, 20154–20159 (2001).

    Article  CAS  Google Scholar 

  24. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnol. 17, 1030–1032 (1999).

    Article  CAS  Google Scholar 

  25. Huang, C.F., Buu, L.M., Yu, W.L. & Lee, F.J. Characterization of a novel ADP-ribosylation factor-like protein (yARL3) in Saccharomyces cerevisiae. J. Biol. Chem. 274, 3819–3827. (1999).

    Article  CAS  Google Scholar 

  26. Tercero, J.C., Riles, L.E. & Wickner, R.B. Localized mutagenesis and evidence for post-transcriptional regulation of MAK3. A putative N-acetyltransferase required for double-stranded RNA virus propagation in Saccharomyces cerevisiae. J. Biol. Chem. 267, 20270–20276 (1992).

    CAS  PubMed  Google Scholar 

  27. Peneff, C., Mengin-Lecreulx, D. & Bourne, Y. The crystal structures of Apo and complexed Saccharomyces cerevisiae GNA1 shed light on the catalytic mechanism of an amino-sugar N-acetyltransferase. J. Biol. Chem. 276, 16328–16334 (2001).

    Article  CAS  Google Scholar 

  28. Bonangelino, C.J., Chavez, E.M. & Bonifacino, J.S. Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Mol. Biol. Cell 13, 2486–2501 (2002).

    Article  CAS  Google Scholar 

  29. Votsmeier, C. & Gallwitz, D. An acidic sequence of a putative yeast Golgi membrane protein binds COPII and facilitates ER export. EMBO J. 20, 6742–6750 (2001).

    Article  CAS  Google Scholar 

  30. Schurmann, A., Massmann, S. & Joost, H.G. ARP is a plasma membrane-associated Ras-related GTPase with remote similarity to the family of ADP-ribosylation factors. J. Biol. Chem. 270, 30657–30663 (1995).

    Article  CAS  Google Scholar 

  31. Mueller, A.G. et al. Embryonic lethality caused by apoptosis during gastrulation in mice lacking the gene of the ADP-ribosylation factor-related protein 1. Mol. Cell. Biol. 22, 1488–1494 (2002).

    Article  CAS  Google Scholar 

  32. Cavenagh, M.M. et al. ADP-ribosylation factor (ARF)-like 3, a new member of the ARF family of GTP-binding proteins cloned from human and rat tissues. J. Biol. Chem. 269, 18937–18942 (1994).

    CAS  PubMed  Google Scholar 

  33. Teasdale, R.D. & Jackson, M.R. Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the Golgi apparatus. Annu. Rev. Cell Dev. Biol. 12, 27–54 (1996).

    Article  CAS  Google Scholar 

  34. Polevoda, B., Norbeck, J., Takakura, H., Blomberg, A. & Sherman, F. Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae. EMBO J. 18, 6155–6168 (1999).

    Article  CAS  Google Scholar 

  35. Song, O.K., Wang, X., Waterborg, J.H. & Sternglanz, R. An Nα-acetyltransferase responsible for acetylation of the N-terminal residues of histones H4 and H2A. J. Biol. Chem. 278, 38109–38112 (2003).

    Article  CAS  Google Scholar 

  36. Polevoda, B., Cardillo, T.S., Doyle, T.C., Bedi, G.S. & Sherman, F. Nat3p and Mdm20p are required for function of yeast NatB Nα-terminal acetyltransferase and of actin and tropomyosin. J. Biol. Chem. 278, 30686–30697 (2003).

    Article  CAS  Google Scholar 

  37. Singer, J.M. & Shaw, J.M. Mdm20 protein functions with Nat3 protein to acetylate Tpm1 protein and regulate tropomyosin-actin interactions in budding yeast. Proc. Natl. Acad. Sci. USA 100, 7644–7649 (2003).

    Article  CAS  Google Scholar 

  38. Wickner, R.B. Double-stranded and single-stranded RNA viruses of Saccharomyces cerevisiae. Annu. Rev. Microbiol. 46, 347–375 (1992).

    Article  CAS  Google Scholar 

  39. Tamkun, J.W. et al. The arflike gene encodes an essential GTP-binding protein in Drosophila. Proc. Natl. Acad. Sci. USA 88, 3120–3124 (1991).

    Article  CAS  Google Scholar 

  40. Heinemeyer, W., Kleinschmidt, J.A., Saidowsky, J., Escher, C. & Wolf, D.H. Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J. 10, 555–562 (1991).

    Article  CAS  Google Scholar 

  41. Levine, T.P. & Munro, S. Targeting of Golgi-specific pleckstrin homology domains involves both PtdIns 4-Kinase-dependent and -independent components. Curr. Biol. 12, 695–704 (2002).

    Article  CAS  Google Scholar 

  42. Gillingham, A.K., Pfeifer, A.C. & Munro, S. CASP, the alternatively spliced product of the gene encoding the CDP transcription factor, is a Golgi membrane protein related to giantin. Mol. Biol. Cell 13, 3761–3774 (2002).

    Article  CAS  Google Scholar 

  43. Jungmann, J. & Munro, S. Multi-protein complexes in the cis Golgi of Saccharomyces cerevisiae with α-1,6-mannosyltransferase activity. EMBO J. 17, 423–434 (1998).

    Article  CAS  Google Scholar 

  44. Prescott, A.R., Lucocq, J.M., James, J., Lister, J.M. & Ponnambalam, S. Distinct compartmentalization of TGN46 and β1,4-galactosyltransferase in HeLa cells. Eur. J. Cell Biol. 72, 238–246 (1997).

    CAS  PubMed  Google Scholar 

  45. Seelig, H.P., Schranz, P., Schroter, H., Wiemann, C. & Renz, M. Macrogolgin - a new 376 kD Golgi complex outer membrane protein as target of antibodies in patients with rheumatic diseases and HIV infections. J. Autoimmun. 7, 67–91 (1994).

    Article  CAS  Google Scholar 

  46. Shevchenko, A. et al. Linking genome and proteome by mass spectrometry - large-scale identification of yeast proteins from 2-dimensional gels. Proc. Natl. Acad. Sci. USA 93, 14440–14445 (1996).

    Article  CAS  Google Scholar 

  47. Wiggins, C.A.R. & Munro, S. Activity of the yeast MNN1 α-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc. Natl Acad. Sci. USA 95, 7945–7950 (1998).

    Article  CAS  Google Scholar 

  48. Amor, J.C., Harrison, D.H., Kahn, R.A. & Ringe, D. Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature 372, 704–708 (1994).

    Article  CAS  Google Scholar 

  49. Vogel, F., Hartmann, E., Gorlich, D. & Rapoport, T.A. Segregation of the signal sequence receptor protein in the rough endoplasmic reticulum membrane. Eur. J. Cell Biol. 53, 197–202 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Gillingham and D. Görlich for reagents, F. Begum and S. Peak-Chew for mass spectrometry, and M. Freeman and K. Röper for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Munro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Fig. S2 (PDF 1479 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behnia, R., Panic, B., Whyte, J. et al. Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat Cell Biol 6, 405–413 (2004). https://doi.org/10.1038/ncb1120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing