Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamin 2 binds γ-tubulin and participates in centrosome cohesion


Dynamin 2 (Dyn2) is a large GTPase involved in vesicle formation and actin reorganization1,2,3. In this study, we report a novel role for Dyn2 as a component of the centrosome that is involved in centrosome cohesion. By light microscopy, Dyn2 localized aside centrin and colocalized with γ-tubulin at the centrosome; by immunoelectron microscopy, however, Dyn2 was detected in the pericentriolar material as well as on centrioles. Exogenously expressed green fluorescent protein (GFP)-tagged Dyn2 also localized to the centrosome, whereas glutathione S-transferase (GST)-tagged Dyn2 pulled down a protein complex(es) containing actin, α-tubulin and γ-tubulin from liver homogenate. Furthermore, gel overlay and immunoprecipitation indicated a direct interaction between γ-tubulin and a 219-amino-acid middle domain of Dyn2. Reduction of Dyn2 protein levels with small-interfering RNA (siRNA) resulted in centrosome splitting, whereas microtubule nucleation from centrosomes was not affected, suggesting a role for Dyn2 in centrosome cohesion. Finally, fluorescence recovery after photobleaching (FRAP) analysis of a GFP-tagged Dyn2 middle domain indicated that Dyn2 is a dynamic exchangeable component of the centrosome. These findings suggest a novel function for Dyn2 as a participant in centrosome cohesion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Dyn2 localizes to the pericentriolar material and centrioles.
Figure 2: Dyn2 cofractionates and colocalizes with γ-tubulin in centrosomes from rat fibroblasts.
Figure 3: The middle domain mediates Dyn2 centrosomal localization and interacts with γ-tubulin.
Figure 4: Centrosome splitting is induced in Dyn2 siRNA-treated cells.
Figure 5: Dyn2-Mid–GFP is a dynamic component of the centrosome.

Accession codes




  1. 1

    Orth, J.D. & McNiven, M.A. Dynamin at the actin–membrane interface. Curr. Opin. Cell Biol. 15, 31–39 (2003).

    CAS  Article  Google Scholar 

  2. 2

    McNiven, M.A., Cao, H., Pitts, K.R. & Yoon, Y. The dynamin family of mechanoenzymes: pinching in new places. Trends Biochem. Sci. 25, 115–120 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Hinshaw, J.E. Dynamin and its role in membrane fission. Annu. Rev. Cell Dev. Biol. 16, 483–519 (2000).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Doxsey, S.J. Re-evaluating centrosome function. Nature Rev. Mol. Cell Biol. 2, 688–698 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Lange, B.M.H. Integration of the centrosome in cell-cycle control, stress response and signal transduction pathways. Curr. Opin. Cell Biol. 14, 35–43 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Julian, M. et al. γ-tubulin participates in the formation of the midbody during cytokinesis in mammalian cells. J. Cell Sci. 105, 145–156 (1993).

    CAS  Google Scholar 

  7. 7

    Karki, S., LaMonte, B. & Holzbaur, E.L. Characterization of the p22 subunit of dynactin reveals the localization of cytoplasmic dynein and dynactin to the midbody of dividing cells. J. Cell Biol. 142, 1023–1034 (1998).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Ha Kim, Y., Yeol Choi, J., Jeong, Y., Wolgemuth, D.J. & Rhee, K. Nek2 localizes to multiple sites in mitotic cells, suggesting its involvement in multiple cellular functions during the cell cycle. Biochem. Biophys. Res. Comm. 290, 730–736 (2002).

    Article  Google Scholar 

  9. 9

    Herrmann, L., Dittmar, T. & Erdmann, K.S. The protein tyrosine phosphatase PTP-BL associates with the midbody and is involved in the regulation of cytokinesis. Mol. Biol. Cell 14, 230–240 (2003).

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Jang, Y.J., Lin, C.Y., Ma, S. & Erikson, R.L. Functional studies on the role of the C-terminal domain of mammalian polo-like kinase. Proc. Natl Acad. Sci. USA 99, 1984–1989 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Thompson, H.M., Skop, A.R., Euteneuer, U., Meyer, B.J. & McNiven, M.A. The large GTPase dynamin associates with the spindle midzone and is required for cytokinesis. Curr. Biol. 12, 2111–2117 (2002).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Moudjou, M., Bordes, N., Paintrand, M. & Bornens, M. γ-tubulin in mammalian cells: the centrosomal and the cytosolic forms. J. Cell Sci. 109, 875–887 (1996).

    CAS  Google Scholar 

  13. 13

    Mitchison, T.J. & Kirschner, M.W. in Methods in Enzymology Vol. 134 (ed. Vallee, R.B.) 261–268 (Academic Press, San Diego, 1986).

    Google Scholar 

  14. 14

    Mitchison, T.J. & Kirschner, M.W. Microtubule assembly nucleated by isolated centrosomes. Nature 312, 232–237 (1984).

    CAS  Article  Google Scholar 

  15. 15

    Moudjou, M. & Bornens, M. in Cell biology: A laboratory handbook, Vol. 1 (ed. Celis, J.E.) 595–604 (Academic Press, San Diego, 1994).

    Google Scholar 

  16. 16

    Herskovits, J.S., Shpetner, H.S., Burgess, C.C. & Vallee, R.B. Microtubules and Src-homology 3 domains stimulate the dynamin GTPase via its C-terminal domain. Proc. Natl Acad. Sci. USA 90, 11468–11472 (1993).

    CAS  Article  Google Scholar 

  17. 17

    Warnock, D.E., Baba, T. & Schmid, S.L. Ubiquitously expressed dynamin-II has a higher intrinsic GTPase activity and a greater propensity for self-assembly than neuronal dynamin-I. Mol. Biol. Cell 8, 2553–2562 (1997).

    CAS  Article  PubMed  Google Scholar 

  18. 18

    van der Bliek, A.M. et al. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J. Cell Biol. 122, 553–563 (1993).

    CAS  Article  Google Scholar 

  19. 19

    Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 428–429 (2001).

    Article  Google Scholar 

  20. 20

    Paintrand, M., Moudjou, M., Delacroix, H. & Bornens, M. Centrosome organization and centriole architecture: their sensitivity to divalent cations. J. Struct. Biol. 108, 107–128 (1992).

    CAS  Article  Google Scholar 

  21. 21

    Dictenberg, J.B. et al. Pericentrin and γ-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J. Cell Biol. 141, 163–174 (1998).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Khodjakov, A. & Rieder, C.L. The sudden recruitment of γ-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J. Cell Biol. 146, 585–596 (1999).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Henley, J.R. & McNiven, M.A. Association of a dynamin-like protein with the Golgi apparatus in mammalian cells. J. Cell Biol. 133, 761–775 (1996).

    CAS  Article  Google Scholar 

  24. 24

    Henley, J.R., Krueger, E.W., Oswald, B.J. & McNiven, M.A. Dynamin-mediated internalization of caveolae. J. Cell Biol. 141, 85–99 (1998).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Euteneuer, U., Gräf, R., Kube-Granderath, E. & Schliwa, M. Dictyostelium γ-tubulin: molecular characterization and ultrastructural localization. J. Cell Sci. 111, 405–412 (1998).

    CAS  Google Scholar 

  26. 26

    Jones, S.M., Howell, K.E., Henley, J.R., Cao, H. & McNiven, M.A. Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 279, 573–577 (1998).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Cao, H., Garcia, F. & McNiven, M.A. Differential distribution of dynamin isoforms in mammalian cells. Mol. Biol. Cell 9, 2595–2609 (1998).

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Marks, D.L., Larkin, J.M. & McNiven, M.A. Association of kinesin with the Golgi apparatus in rat hepatocytes. J. Cell Sci. 107, 2417–2426 (1994).

    CAS  Google Scholar 

  29. 29

    Okamoto, P.M., Gamby, C., Wells, D., Fallon, J. & Vallee, R.B. Dynamin isoform-specific interaction with the Shank/ProSAP scaffolding proteins of the postsynaptic density and actin cytoskeleton. J. Biol. Chem. 276, 48458–48465 (2001).

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Cao, H., Thompson, H.M., Krueger, E.W. & McNiven, M.A. Disruption of Golgi structure and function in mammalian cells expressing a mutant dynamin. J. Cell Sci. 113, 1993–2002 (2000).

    CAS  Google Scholar 

Download references


The authors thank E.W. Krueger, S.G. Weller and Dr. Y. Yoon for technical advice, and the entire McNiven lab for helpful suggestions and critically reading the manuscript. The authors also thank J.L. Salisbury and S.L. Schmid for anti-centrin and anti-Dyn1 antibodies, respectively, and D.J. Tindall for the scrambled siRNA oligonucleotides.

Author information



Corresponding author

Correspondence to Mark A. McNiven.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information Figures

Supplementary Information, Fig. S1 (PDF 878 kb)

Supplementary Information, Fig. S2

Legends to accompany movies

Supplementary Information, Movie 1 (MOV 2595 kb)

Supplementary Information, Movie 2 (MOV 3758 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thompson, H., Cao, H., Chen, J. et al. Dynamin 2 binds γ-tubulin and participates in centrosome cohesion. Nat Cell Biol 6, 335–342 (2004).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing