Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interactions of GGA3 with the ubiquitin sorting machinery

Abstract

The Golgi-localized, γ-ear-containing, Arf-binding (GGA) proteins constitute a family of clathrin adaptors that are mainly associated with the trans-Golgi network (TGN)1,2,3 and mediate the sorting of mannose 6-phosphate receptors4,5,6. This sorting is dependent on the interaction of the VHS domain of the GGAs with acidic-cluster-dileucine signals in the cytosolic tails of the receptors4,5. Here we demonstrate the existence of another population of GGAs that are associated with early endosomes. RNA interference (RNAi) of GGA3 expression results in accumulation of the cation-independent mannose 6-phosphate receptor and internalized epidermal growth factor (EGF) within enlarged early endosomes. This perturbation impairs the degradation of internalized EGF, a process that is normally dependent on the sorting of ubiquitinated EGF receptors (EGFRs) to late endosomes. Protein interaction analyses show that the GGAs bind ubiquitin. The VHS and GAT domains of GGA3 are responsible for this binding, as well as for interactions with TSG101, a component of the ubiquitin-dependent sorting machinery. Thus, GGAs may have additional roles in sorting of ubiquitinated cargo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of the GGAs to endosomes.
Figure 2: Depletion of GGA3 affects the localization of the CI-MPR.
Figure 3: Depletion of GGA3 inhibits EGF degradation.
Figure 4: Interaction of GGAs with ubiquitin and TSG101.
Figure 5: Interaction of GGA3 with ubiquitin is required for endosomal sorting.

Similar content being viewed by others

References

  1. Boman, A.L., Zhang, C., Zhu, X. & Kahn, R.A. A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi. Mol. Biol. Cell. 11, 1241–1255 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dell'Angelica, E.C. et al. GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J. Cell Biol. 149, 81–94 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hirst, J. et al. A family of proteins with γ-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J. Cell Biol. 49, 67–80 (2000).

    Article  Google Scholar 

  4. Puertollano, R., Aguilar, R.C., Gorshkova, I., Crouch, R.J. & Bonifacino, J.S. Sorting of mannose 6-phosphate receptors mediated by the GGAs. Science 292, 1712–1716 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Zhu, Y., Doray, B., Poussu, A., Lehto, V.P. & Kornfeld, S. Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6- phosphate receptor. Science 292, 1716–1718 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Ghosh, P., Griffith, J., Geuze, H.J. & Kornfeld, S. Mammalian GGAs act together to sort mannose 6-phosphate receptors. J. Cell Biol. 163, 755–766 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Puertollano, R., Randazzo, P., Hartnell, L.M., Presley, J. & Bonifacino, J.S. The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Cell. 105, 93–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Wasiak, S. et al. Enthoprotin: a novel clathrin-associated protein identified through subcellular proteomics. J. Cell Biol. 158, 855–862 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mattera, R., Arighi, C.N., Lodge, R., Zerial, M. & Bonifacino, J.S. Divalent interaction of the GGAs with the Rabaptin-5–Rabex-5 complex. EMBO J. 22, 78–88 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lui, W.W. et al. Binding partners for the COOH-terminal appendage domains of the GGAs and γ-adaptin. Mol. Biol. Cell 14, 2385–2398 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Puertollano, R. et al. Morphology and dynamics of clathrin/GGA1-coated carriers budding from the trans-Golgi network. Mol. Biol. Cell 14, 1545–1557 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klumperman, J. et al. Differences in the endosomal distributions of the two mannose 6-phosphate receptors. J. Cell Biol. 121, 997–1010 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Futter, C.E., Pearse, A., Hewlett, L.J. & Hopkins, C.R. Multivesicular endosomes containing internalized EGF–EGF receptor complexes mature and then directly with lysosomes. J. Cell Biol. 132, 1011–1023 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Longva, K.E. et al. Ubiquitination and proteasomal activity is required for transport of the EGF receptor to inner membranes of multivesicular bodies. J. Cell Biol. 156, 843–854 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bache, K.G., Brech, A., Mehlum, A. & Stenmark, H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol. 162, 435–442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bache, K.G., Raiborg, C., Mehlum, A. & Stenmark, H. STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J. Biol. Chem. 278, 12513–12521 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Bishop, N., Horman, A. & Woodman, P. Mammalian class E vps proteins recognize ubiquitin and act in the removal of endosomal protein–ubiquitin conjugates. J. Cell Biol. 157, 91–101 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu Q., Hope L.W., Brasch M., Reinhard C. & Cohen S.N. TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation. Proc. Natl Acad. Sci. USA 100, 7626–7631 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Katzmann, D.J., Babst, M. & Emr, S.D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Shih, S.C. et al. Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nature Cell Biol. 4, 389–393 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Mizuno, E, Kawahata, K., Kato, M., Kitamura, N. & Komada, M. STAM proteins bind ubiquitinated proteins on the early endosome via the VHS domain and ubiquitin-interacting motif. Mol. Biol. Cell. 14, 3675–3689 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Misra, S., Puertollano, R., Kato, Y., Bonifacino, J.S. & Hurley, J.H. Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature 415, 933–937 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Collins, B.M., Watson, P.J. & Owen, D.J. The structure of the GGA1-GAT domain reveals the molecular basis for ARF binding and membrane association of GGAs. Dev. Cell 4, 321–332 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Suer, S., Misra, S., Saidi, L.F. & Hurley, J.H. Structure of the GAT domain of human GGA1: a syntaxin amino-terminal domain fold in an endosomal trafficking adaptor. Proc. Natl. Acad. Sci. USA 100, 4451–4456 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Beal, R., Deveraux, Q., Xia, G., Rechsteiner, M. & Pickart, C. Surface hydrophobic residues of multiubiquitin chains essential for proteolytic targeting. Proc. Natl Acad. Sci. USA 93, 861–866 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shih, S.C., Sloper-Mould, K.E. & Hicke, L. Monoubiquitin carries a novel internalization signal that is appended to activated receptors. EMBO J. 19, 187–198 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sloper-Mould, K.E., Jemc, J.C., Pickart, C.M. & Hicke, L. Distinct functional surface regions on ubiquitin. J. Biol. Chem. 276, 30483–30489 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Prag, G. et al. Mechanism of ubiquitin recognition by the CUE domain of Vps9p. Cell. 113, 609–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Swanson, K.A, Kang, R.S, Stamenova, S.D, Hicke, L. & Radhakrishnan, I. Solution structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor downregulation. EMBO J. 22, 4597–606 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shiba, Y. et al. GAT (GGA and Tom1) domain responsible for ubiquitin binding and ubiquitination. J. Biol. Chem. (in the press).

  31. Pornillos, O. et al. HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein. J. Cell Biol. 162, 425–434 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bishop, N. & Woodman, P. ATPase-defective mammalian VPS4 localizes to aberrant endosomes and impairs cholesterol trafficking. Mol. Biol. Cell. 11, 227–239 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wakasugi, M. et al. Predominant expression of the short form of GGA3 in human cell lines and tissues. Biochem. Biophys. Res. Commun. 306, 687–692 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Takatsu, H., Katoh, Y., Shiba, Y. & Nakayama, K. Golgi-localizing, γ-adaptin ear homology domain, ADP-ribosylation factor-binding (GGA) proteins interact with acidic dileucine sequences within the cytoplasmic domains of sorting receptors through their vps27p/hrs/stam (VHS) domains. J. Biol. Chem. 276, 28541–28545 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank X. Zhu and A. San Miguel for excellent technical assistance, and S. Cohen, P. Woodman, R. Kahn, and M. S. Robinson for kind gifts of reagents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan S. Bonifacino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puertollano, R., Bonifacino, J. Interactions of GGA3 with the ubiquitin sorting machinery. Nat Cell Biol 6, 244–251 (2004). https://doi.org/10.1038/ncb1106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1106

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing