Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Abi1 is essential for the formation and activation of a WAVE2 signalling complex

Abstract

WAVE2 belongs to a family of proteins that mediates actin reorganization by relaying signals from Rac to the Arp2/3 complex, resulting in lamellipodia protrusion. WAVE2 displays Arp2/3-dependent actin nucleation activity in vitro, and does not bind directly to Rac. Instead, it forms macromolecular complexes that have been reported to exert both positive and negative modes of regulation. How these complexes are assembled, localized and activated in vivo remains to be established. Here we use tandem mass spectrometry to identify an Abi1-based complex containing WAVE2, Nap1 (Nck-associated protein) and PIR121. Abi1 interacts directly with the WHD domain of WAVE2, increases WAVE2 actin polymerization activity and mediates the assembly of a WAVE2–Abi1–Nap1–PIR121 complex. The WAVE2–Abi1–Nap1–PIR121 complex is as active as the WAVE2–Abi1 sub-complex in stimulating Arp2/3, and after Rac activation it is re-localized to the leading edge of ruffles in vivo. Consistently, inhibition of Abi1 by RNA interference (RNAi) abrogates Rac-dependent lamellipodia protrusion. Thus, Abi1 orchestrates the proper assembly of the WAVE2 complex and mediates its activation at the leading edge in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Abi1 binds to PIR121, Nap1 and WAVE2.
Figure 2: In vitro reconstitution of the WAVE2–Abi1–Nap1–PIR121 complex.
Figure 3: The WAVE–Abi1–Nap1–PIR121 complex is stable after GTP-γS-Rac binding.
Figure 4: Stimulation of Arp2/3 by WAVE2 and WAVE1 is enhanced by Abi1.
Figure 5: Abi1 is essential for Rac-dependent lamellipodia protrusions.

Similar content being viewed by others

References

  1. Pollard, T.D. The cytoskeleton, cellular motility and the reductionist agenda. Nature 422, 741–745 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Takenawa, T. & Miki, H. WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J. Cell Sci. 114, 1801–1809 (2001).

    CAS  PubMed  Google Scholar 

  3. Miki, H., Yamaguchi, H., Suetsugu, S. & Takenawa, T. IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408, 732–735 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Eden, S., Rohatgi, R., Podtelejnikov, A.V., Mann, M. & Kirschner, M.W. Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418, 790–793 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Shi, Y., Alin, K. & Goff, S.P. Abl-interactor-1, a novel SH3 protein binding to the carboxy-terminal portion of the Abl protein, suppresses v-abl transforming activity. Genes Dev. 9, 2583–2597 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Dai, Z. & Pendergast, A.M. Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev. 9, 2569–2582 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Scita, G. et al. EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401, 290–293 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Soderling, S.H. et al. The WRP component of the WAVE-1 complex attenuates Rac-mediated signalling. Nature Cell Biol. 4, 970–975 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Rogers, S.L., Wiedemann, U., Stuurman, N. & Vale, R.D. Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J. Cell Biol. 162, 1079–1088 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saller, E. et al. Increased apoptosis induction by 121F mutant p53. Embo J. 18, 4424–4437 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nagase, T. et al. Prediction of the coding sequences of unidentified human genes. XII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Res. 5, 355–364 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Schenck, A., Bardoni, B., Moro, A., Bagni, C. & Mandel, J.L. A highly conserved protein family interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P. Proc. Natl Acad. Sci. USA 98, 8844–8849 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Witke, W. et al. In mouse brain profilin I and profilin II associate with regulators of the endocytic pathway and actin assembly. Embo J. 17, 967–976 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kobayashi, K. et al. p140Sra-1 (specifically Rac1-associated protein) is a novel specific target for Rac1 small GTPase. J. Biol. Chem. 273, 291–295 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Kitamura, T. et al. Molecular cloning of p125Nap1, a protein that associates with an SH3 domain of Nck. Biochem. Biophys. Res. Commun. 219, 509–514 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki, T. et al. Molecular cloning of a novel apoptosis-related gene, human Nap1 (NCKAP1), and its possible relation to Alzheimer disease. Genomics 63, 246–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Ridley, A.J., Paterson, H.F., Johnston, C.L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Kitamura, Y. et al. Interaction of Nck-associated protein 1 with activated GTP-binding protein Rac. Biochem. J. 322, 873–878 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Soto, M.C. et al. The GEX-2 and GEX-3 proteins are required for tissue morphogenesis and cell migrations in C. elegans. Genes Dev. 16, 620–632 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Soderling, S.H. et al. Loss of WAVE-1 causes sensorimotor retardation and reduced learning and memory in mice. Proc. Natl Acad. Sci. USA 100, 1723–1728 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Benachenhou, N., Massy, I. & Vacher, J. Characterization and expression analyses of the mouse Wiskott-Aldrich syndrome protein (WASP) family member Wave1/Scar. Gene 290, 131–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Adams, J.C. Regulation of protrusive and contractile cell-matrix contacts. J. Cell Sci. 115, 257–265 (2002).

    CAS  PubMed  Google Scholar 

  24. Steffen, A.K.R., Ehinger, J., Innocenti, M., Scita, G., Wehland, J. & Stradal, T.E.B. Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation. Embo J. 23, 749–759 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Allen, P.G. Actin filament uncapping localizes to ruffling lamellae and rocketing vesicles. Nature Cell Biol. 5, 972–979 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Ichetovkin, I., Grant, W. & Condeelis, J. Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr. Biol. 12, 79–84 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Yamamoto, A., Suzuki, T. & Sakaki, Y. Isolation of hNap1BP which interacts with human Nap1 (NCKAP1) whose expression is down-regulated in Alzheimer's disease. Gene 271, 159–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Biesova, Z., Piccoli, C. & Wong, W.T. Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth. Oncogene 14, 233–241 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Pantaloni, D., Boujemaa, R., Didry, D., Gounon, P. & Carlier, M.F. The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nature Cell Biol. 2, 385–391 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from AIRC (Associazione Italiana Ricerca sul Cancro) to G.S. and P.P.D.F.; Human Science Frontier Program to G.S. and M.F.C.; Telethon Foundation, the CNR (Target project Biotechnology) and the EC (V Framework) to P.P.D.F.; FIRC (Fondazione Italiana Ricerca sul Cancro) to M.I. from the Italian Ministry of Health to G.S. We would like to thank L. Cairns and S. Bossi for technical help, S. Polo for reading the manuscript, B. Baum for sharing unpublished materials, and G. Cesareni for helping with the generation of WAVE2 reagents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Scita.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Innocenti, M., Zucconi, A., Disanza, A. et al. Abi1 is essential for the formation and activation of a WAVE2 signalling complex. Nat Cell Biol 6, 319–327 (2004). https://doi.org/10.1038/ncb1105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing