Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prion domains: sequences, structures and interactions

Abstract

Mammalian and most fungal infectious proteins (also known as prions) are self-propagating amyloid, a filamentous β-sheet structure. A prion domain determines the infectious properties of a protein by forming the core of the amyloid. We compare the properties of known prion domains and their interactions with the remainder of the protein and with chaperones. Ure2p and Sup35p, two yeast prion proteins, can still form prions when the prion domains are shuffled, indicating a parallel in-register β-sheet structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classification of prions into four types.
Figure 2: Prion domains.
Figure 3: Sequence-independent prion formation argues for parallel β-sheet structure.

Similar content being viewed by others

References

  1. Griffith, J. S. Self-replication and scrapie. Nature 215, 1043–1044 (1967).

    Article  CAS  PubMed  Google Scholar 

  2. Prusiner, S. B. Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. Tuite, M. F. & Koloteva-Levin, N. Propagating prions in fungi and mammals. Mol. Cell 14, 541–552 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Chernoff, Y. O. Amyloidogenic domains, prions and structural inheritance: rudiments of early life or recent acquisition? Curr. Opin. Chem. Biol. 8, 665–671 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Wickner, R. B. et al. Prions: proteins as genes and infectious entities. Genes Dev. 18, 470–485 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Aguzzi, A. & Polymenidou, M. Mammalian prion biology: one century of evolving concepts. Cell 116, 313–327 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Prusiner, S. B. Prions. Proc. Natl Acad. Sci. USA 95, 13363–13383 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wickner, R. B. [URE3] as an altered URE2 protein: evidence for a prion analog in S. cerevisiae. Science 264, 566–569 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G. & Liebman, S. W. Genesis and variability of [PSI ] prion factors in Saccharomyces cerevisiae. Genetics 144, 1375–1386 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coustou, V., Deleu, C., Saupe, S. & Begueret, J. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc. Natl Acad. Sci. USA 94, 9773–9778 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caughey, B. & Lansbury, P. T. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible prion aggregates from innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Magasanik, B. & Kaiser, C. A. Nitrogen regulation in Saccharomyces cerevisiae. Gene 290, 1–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Liebman, S. W. & Derkatch, I. L. The yeast [PSI+] prion: making sense out of nonsense. J. Biol. Chem. 274, 1181–1184 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Derkatch, I. L., Bradley, M. E., Hong, J. Y. & Liebman, S. W. Prions affect the appearance of other prions: the story of [PIN]. Cell 106, 171–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Saupe, S. J. Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol. Mol. Biol. Rev. 64, 489–502 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roberts, B. T. & Wickner, R. B. A class of prions that propagate via covalent auto-activation. Genes Dev. 17, 2083–2087 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kicka, S. & Silar, P. PaASK1, a mitogen-activated protein kinase kinase kinase that controls cell degeneration and cell differentiation in Podospora anserina. Genetics 166, 1241–1252 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Masison, D. C. & Wickner, R. B. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 270, 93–95 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Taylor, K. L., Cheng, N., Williams, R. W., Steven, A. C. & Wickner, R. B. Prion domain initiation of amyloid formation in vitro from native Ure2p. Science 283, 1339–1343 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. TerAvanesyan, A., Dagkesamanskaya, A. R., Kushnirov, V. V. & Smirnov, V. N. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137, 671–676 (1994).

    Article  CAS  Google Scholar 

  21. King, C. -Y. et al. Prion-inducing domain 2–114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc. Natl Acad. Sci. USA 94, 6618–6622 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Glover, J. R. et al. Self-seeded fibers formed by Sup35, the protein determinant of [PSI +], a heritable prion-like factor of S. cerevisiae. Cell 89, 811–819 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Bolton, D. C., McKinley, M. P. & Prusiner, S. B. Identification of a protein that purifies with the scrapie prion. Science 218, 1309–1311 (1982).

    Article  CAS  PubMed  Google Scholar 

  24. Fischer, M. et al. Prion protein (PrP) with amino-terminal deletions restoring susceptibility of PrP knockout mice to scrapie. EMBO J. 15, 1255–1264 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Balguerie, A. et al. Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina. EMBO J. 22, 2071–2081 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baxa, U. et al. Architecture of Ure2p prion filaments: the N-terminal domain forms a central core fiber. J. Biol. Chem. 278, 43717–43727 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Maddelein, M. L., Dos Reis, S., Duvezin-Caubet, S., Coulary-Salin, B. & Saupe, S. J. Amyloid aggregates of the HET-s prion protein are infectious. Proc. Natl Acad. Sci. USA 99, 7402–7407 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. King, C. Y. & Diaz-Avalos, R. Protein-only transmission of three yeast prion strains. Nature 428, 319–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J. S. Conformational variations in an infectious protein determine prion strain differences. Nature 428, 323–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Brachmann, A., Baxa, U. & Wickner, R. B. Prion generation in vitro: amyloid of Ure2p is infectious. EMBO J. 24, 3082–3092 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Legname, G. et al. Synthetic mammalian prions. Science 305, 673–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Doel, S. M., McCready, S. J., Nierras, C. R. & Cox, B. S. The dominant PNM2 mutation which eliminates the [PSI] factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137, 659–670 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. DePace, A. H., Santoso, A., Hillner, P. & Weissman, J. S. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93, 1241–1252 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Kochneva-Pervukhova, N. V. et al. Mechanism of inhibition of Ψ+ prion determinant propagation by a mutation of the N-terminus of the yeast Sup35 protein. EMBO J. 17, 5805–5810 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Derkatch, I. L., Bradley, M. E., Zhou, P. & Liebman, S. W. The PNM2 mutation in the prion protein domain of SUP35 has distinct effects on different variants of the [PSI +] prion in yeast. Curr. Genet. 35, 59–67 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Mead, S. et al. Balancing selection at the prion protein gene consistent with prehistoric kurulike epidemics. Science 300, 640–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Scott, M. et al. Propagation of prions with artificial properties in transgenic mice expressing chimeric PrP genes. Cell 73, 979–988 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Priola, S. A., Caughey, B., Race, R. E. & Chesebro, B. Heterologous PrP molecules interfere with accumulation of protease-resistant PrP in scrapie-infected murine neuroblastoma cells. J. Virol. 68, 4873–4878 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Prusiner, S. B. et al. Transgenic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63, 673–686 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Edskes, H. K., Gray, V. T. & Wickner, R. B. The [URE3] prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments. Proc. Natl Acad. Sci. USA 96, 1498–1503 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Owen, F. et al. Insertion in prion protein gene in familial Creutzfeldt–Jakob disease. Lancet 1, 51–52 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, J. J. & Lindquist, S. Oligopeptide-repeat expansions modulate 'protein-only' inheritance in yeast. Nature 400, 573–576 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Osherovich, L. Z., Cox, B. S., Tuite, M. F. & Weissman, J. S. Dissection and design of yeast prions. PLoS Biol 2, E86 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Flechsig, E. et al. Prion protein devoid of the octapeptide repeat region restores susceptibility to scrapie in PrP knockout mice. Neuron 27, 399–408 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Prusiner, S. B., Groth, D. F., Bolton, D. C., Kent, S. B. & Hood, L. E. Purification and structural studies of a major scrapie prion protein. Cell 38, 127–134 (1984).

    Article  CAS  PubMed  Google Scholar 

  46. Parham, S. N., Resende, C. G. & Tuite, M. F. Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO J. 20, 2111–2119 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Borchsenius, A. S., Wegrzyn, R. D., Newnam, G. P., Inge-Vechtomov, S. G. & Chernoff, Y. O. Yeast prion protein derivative defective in aggregate shearing and production of new 'seeds'. EMBO J. 20, 6683–6691 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Maddelein, M. -L. & Wickner, R. B. Two prion-inducing regions of Ure2p are non-overlapping. Mol. Cell. Biol. 19, 4516–4524 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fernandez-Bellot, E., Guillemet, E. & Cullin, C. The yeast prion [URE3] can be greatly induced by a functional mutated URE2 allele. EMBO J. 19, 3215–3222 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ross, E. D., Baxa, U. & Wickner, R. B. Scrambled prion domains form prions and amyloid. Mol. Cell. Biol. 24, 7206–7213 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ross, E. D., Edskes, H. K., Terry, M. J. & Wickner, R. B. Primary sequence independence for prion formation. Proc. Natl Acad. Sci. USA 102, 12825–12830 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Antzutkin, O. N., Leapman, R. D., Balbach, J. J. & Tycko, R. Supramolecular structural constraints on Alzheimer's β-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance. Biochemistry 41, 15436–15450 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Perutz, M. F., Johnson, T., Suzuki, M. & Finch, J. T. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl Acad. Sci. USA 91, 5355–5358 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bradley, M. E., Edskes, H. K., Hong, J. Y., Wickner, R. B. & Liebman, S. W. Interactions among prions and prion “strains” in yeast. Proc. Natl Acad. Sci. USA 99 (Suppl. 4), 16392–16399 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Derkatch, I. L. et al. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Proc. Natl Acad. Sci. USA 101, 12934–12939 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Salnikova, A. B., Kryndushkin, D. S., Smirnov, V. N., Kushnirov, V. V. & Ter-Avanesyan, M. D. Nonsense suppression in yeast cells overproducing Sup35 (eRF3) is caused by its non-heritable amyloids. J. Biol. Chem. 280, 8808–8812 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Benzinger, T. L. et al. Propagating structure of Alzheimer's β-amyloid(10–35) is parallel β-sheet with residues in exact register. Proc. Natl Acad. Sci. USA 95, 13407–13412 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Antzutkin, O. N. et al. Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of β-sheets in Alzheimer's β-amyloid fibrils. Proc. Natl Acad. Sci. USA 97, 13045–13050 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tycko, R. Insights into the amyloid folding problem from solid-state NMR. Biochemistry 42, 3151–3159 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Chan, J. C. C., Oyler, N. A., Yau, W. -M. & Tycko, R. Parallel β-sheets and polar zippers in amyloid fibrils formed by residues 10–39 of the yeast prion protein Ure2p. Biochemistry 44, 10669–10680 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Jayasinghe, S. A. & Langen, R. Identifying structural features of fibrillar islet amyloid polypeptide using site-directed spin labeling. J. Biol. Chem. 279, 48420–48425 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Der-Sarkissian, A., Jao, C. C., Chen, J. & Langen, R. Structural organization of α-synuclein fibrils studied by site-directed spin labeling. J. Biol. Chem. 278, 37530–37535 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Balbach, J. J. et al. Amyloid fibril formation by Aβ16–22, a seven-residue fragment of the Alzheimer's β-amyloid peptide, and structural characterization by solid state NMR. Biochemistry 39, 13748–13759 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Govaerts, C., Wille, H., Prusiner, S. B. & Cohen, F. E. Evidence for assembly of prions with left-handed β-helices into trimers. Proc. Natl Acad. Sci. USA 101, 8342–8347 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Serio, T. R. et al. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289, 1317–1321 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Kishimoto, A. et al. β-Helix is a likely core structure of yeast prion Sup35 amyloid fibers. Biochem. Biophys. Res. Commun. 315, 739–745 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Krishnan, R. & Lindquist, S. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435, 765–772 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. DePace, A. H. & Weissman, J. S. Origins and kinetic consequences of diversity in Sup35 yeast prion fibers. Nature Struct. Biol. 9, 389–396 (2002).

    CAS  PubMed  Google Scholar 

  70. Inoue, Y., Kishimoto, A., Hirao, J., Yoshida, M. & Taguchi, H. Strong growth polarity of yeast prion fiber revealed by single fiber imaging. J. Biol. Chem. 276, 35227–35230 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Pierce, M. M., Baxa, U., Steven, A. C., Bax, A. & Wickner, R. B. Is the prion domain of soluble Ure2p unstructured? Biochemistry 44, 321–328 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Baxa, U., Speransky, V., Steven, A. C. & Wickner, R. B. Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proc. Natl Acad. Sci. USA 99, 5253–5260 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bousset, L., Belrhali, H., Melki, R. & Morera, S. Crystal structures of the yeast prion Ure2p functional region in complex with glutathione and related compounds. Biochemistry 40, 13564–13573 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Bai, M., Zhou, J. M. & Perrett, S. The yeast prion protein Ure2 shows glutathione peroxidase activity in both native and fibrillar forms. J. Biol. Chem. 279, 50025–50030 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Schlumpberger, M. et al. The prion domain of yeast Ure2p induces autocatalytic formation of amyloid fibers by a recombinant fusion protein. Protein Sci. 9, 440–451 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Baxa, U. et al. Filaments of the Ure2p prion protein have a cross-β core structure. J. Struct. Biol. 150, 170–179 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Kochneva-Pervukhova, N. V., Poznyakovski, A. I., Smirnov, V. N. & Ter-Avanesyan, M. D. C-terminal truncation of the Sup35 protein increases the frequency of de novo generation of a prion-based [PSI+ ] determinant in Saccharmyces cerevisiae. Curr. Genet. 34, 146–151 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Brown, P. et al. Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann. Neurol. 35, 513–529 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Locht, C., Chesebro, B., Race, R. & Keith, J. M. Molecular cloning and complete sequence of prion protein cDNA from mouse brain infected with the scrapie agent. Proc. Natl Acad. Sci. USA 83, 6372–6376 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Basler, K. et al. Scrapie and cellular PrP isoforms are encoded by the same chromosomal locus. Cell 46, 417–428 (1986).

    Article  CAS  PubMed  Google Scholar 

  81. Riek, R., Hornemann, S., Wider, G., Glockshuber, R. & Wuthrich, K. NMR characterization of the full-length recombinant murine prion protein, mPrP(23–231). FEBS Lett. 413, 282–288 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Chernoff, Y. O., Lindquist, S. L., Ono, B. -I., Inge-Vechtomov, S. G. & Liebman, S. W. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268, 880–884 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Derkatch, I. L., Bradley, M. E., Zhou, P., Chernoff, Y. O. & Liebman, S. W. Genetic and environmental factors affecting the de novo appearance of the [PSI +] prion in Saccharomyces cerevisiae. Genetics 147, 507–519 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Moriyama, H., Edskes, H. K. & Wickner, R. B. [URE3] prion propagation in Saccharomyces cerevisiae: requirement for chaperone Hsp104 and curing by overexpressed chaperone Ydj1p. Mol. Cell. Biol. 20, 8916–8922 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ness, F., Ferreira, P., Cox, B. S. & Tuite, M. F. Guanidine hydrochloride inhibits the generation of prion “seeds” but not prion protein aggregation in yeast. Mol. Cell. Biol. 22, 5593–5605 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jung, G., Jones, G. & Masison, D. C. Amino acid residue 184 of yeast Hsp104 chaperone is critical for prion-curing by guanidine, prion propagation, and thermotolerance. Proc. Natl Acad. Sci. USA 99, 9936–9941 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N. & Ter-Avanesyan, M. D. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 15, 3127–3134 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wegrzyn, R. D., Bapat, K., Newnam, G. P., Zink, A. D. & Chernoff, Y. O. Mechanism of prion loss after Hsp104 inactivation in yeast. Mol. Cell. Biol. 21, 4656–4669 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Glover, J. R. & Lindquist, S. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Newnam, G. P., Wegrzyn, R. D., Lindquist, S. L. & Chernoff, Y. O. Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol. Cell. Biol. 19, 1325–1333 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kushnirov, V. V., Kryndushkin, D. S., Boguta, M., Smirnov, V. N. & Ter-Avanesyan, M. D. Chaperones that cure yeast artificial [PSI+] and their prion-specific effects. Curr. Biol. 10, 1443–1446 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Jung, G., Jones, G., Wegrzyn, R. D. & Masison, D. C. A role for cytosolic Hsp70 in yeast [PSI+] prion propagation and [PSI+] as a cellular stress. Genetics 156, 559–570 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Allen, K. D. et al. Hsp70 chaperones as modulators of prion life cycle: novel effects of Ssa and Ssb on the Saccharomyces cerevisiae prion [PSI+]. Genetics 169, 1227–1242 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shorter, J. & Lindquist, S. Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science 304, 1793–1797 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Inoue, Y., Taguchi, H., Kishimoto, A. & Yoshida, M. Hsp104 binds to yeast Sup35 prion fiber but needs other factor(s) to sever it. J. Biol. Chem. 279, 52319–52323 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Crist, C. G., Nakayashiki, T., Kurahashi, H. & Nakamura, Y. [PHI+], a novel Sup35-prion variant propagated with non-Gln/Asn oligopeptide repeats in the absence of the chaperone protein Hsp104. Genes Cells 8, 603–618 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Bruce, M. E., McConnell, I., Fraser, H. & Dickinson, A. G. The disease characteristics of different strains of scrapie in Sinc congenic mouse lines: implications for the nature of the agent and host control of pathogenesis. J. Gen. Virol. 72, 595–603 (1991).

    Article  CAS  PubMed  Google Scholar 

  98. Chien, P., Weissman, J. S. & DePace, A. H. Emerging principles of conformation-based prion inheritance. Annu. Rev. Biochem. 73, 617–656 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Collinge, J. Variant Creutzfeldt–Jakob disease. Lancet 354, 317–323 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Hatters, D. M., Minton, A. P. & Howlett, G. J. Macromolecular crowding accelerates amyloid formation by human apolipoprotein C-II. J. Biol. Chem. 277, 7824–7830 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, E., Minton, A. & Wickner, R. Prion domains: sequences, structures and interactions. Nat Cell Biol 7, 1039–1044 (2005). https://doi.org/10.1038/ncb1105-1039

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1105-1039

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing