Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Kinetochore fibre dynamics outside the context of the spindle during anaphase

Abstract

Chromosomes move polewards as kinetochore fibres shorten during anaphase. Fibre dynamics and force production have been studied extensively1,2,3,4,5,6,7,8,9,10, but little is known about these processes in the absence of the spindle matrix. Here we show that laser-microbeam-severed kinetochore fibres in the cytoplasm of grasshopper spermatocytes maintain a constant length while turning over in a polarized manner. Tubulin incorporates at or near the kinetochore and translocates towards severed ends without shortening the fibre. Consequently, the chromosome cannot move polewards unless the severed fibre reattaches to the pole through microtubules. A potential seclusion artefact has been ruled out, as fibres severed inside spindles behave identically despite being surrounded by the spindle matrix. Our data suggest that kinetochore microtubules constantly treadmill11 during anaphase in insect cells. Treadmilling is an intrinsic property of microtubules in the kinetochore fibre, independent of the context and attachment of the spindle. The machinery that depolymerizes minus ends of kinetochore microtubules is functional in a non-spindle context. Attachment to the pole, however, is required to cause net kinetochore fibre shortening to generate polewards forces during anaphase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Length and movement of severed kinetochore fibres.
Figure 2: Dynamics of severed kinetochore fibres.
Figure 3: Chromosome segregation in grasshopper spermatocytes.

Similar content being viewed by others

References

  1. McIntosh, J.R, Hepler, P.K. & Van Wie, D.G. Model for mitosis. Nature 224, 659–663 (1969).

    Article  Google Scholar 

  2. Pickett-Heaps, J.D., Tippit, D.H. & Porter, K.R. Rethinking mitosis. Cell 29, 729–744 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. Inoué, S. & Salmon, E.D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol. Biol. Cell 6, 1619–1640 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rieder, C.L. & Salmon, E.D. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol. 8, 310–318 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Compton, D.A. Spindle assembly in animal cells. Annu. Rev. Biochem. 69, 95–114 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Pickett-Heaps, J.D. & Forer, A. Pac-Man does not resolve the enduring problem of anaphase chromosome movement. Protoplasma 215, 16–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Scholey, J.M., Rogers, G.C. & Sharp, D.J. Mitosis, microtubules, and the matrix. J. Cell Biol. 154, 261–266 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mitchison, T.J. & Salmon, E.D. Mitosis: a history of division. Nature Cell Biol. 3, E17–E21 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. McIntosh, J.R., Grishchuk, E.L. & West, R.R. Chromosome-microtubule interactions during mitosis. Annu. Rev. Cell Dev. Biol. 18, 193–219 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Scholey, J.M., Brust-Mascher, I. & Mogilner, A. Cell division. Nature 422, 746–752 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Margolis, R.L. & Wilson, L. Microtubule treadmills — possible molecular machinery. Nature 293, 705–711 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Gorbsky, G.J., Sammak, P.J. & Borisy, G.G. Chromosomes move polewards in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J. Cell Biol. 104, 9–18 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Savoian, M.S., Goldberg, M.L. & Rieder, C.L. The rate of polewards chromosome motion is attenuated in Drosophila zw10 and rod mutants. Nature Cell Biol. 2, 948–952 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Williams, B.C. et al. Zwilch, a new component of the ZW10/ROD complex required for kinetochore functions. Mol. Biol. Cell 14, 1379–1391 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walczak, C.E. The Kin I kinesins are microtubule end-stimulated ATPases. Mol. Cell 11, 286–288 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Maiato, H., Rieder, C.L., Earnshaw, W.C. & Sunkel, C.E. How do kinetochores CLASP dynamic microtubules? Cell Cycle 2, 511–514 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Maddox, P., Straight, A., Coughlin, P., Mitchison, T.J. & Salmon, E.D. Direct observation of microtubule dynamics at kinetochores in Xenopus extract spindles: implications for spindle mechanics. J. Cell Biol. 162, 377–382 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mitchison, T.J. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J. Cell Biol. 109, 637–652 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Wilson, P.J., Forer, A. & Leggiadro, C. Evidence that kinetochore microtubules in crane-fly spermatocytes disassemble during anaphase primarily at the polewards end. J. Cell Sci. 107, 3015–3027 (1994).

    CAS  PubMed  Google Scholar 

  20. Waters, J.C., Mitchison, T.J., Rieder, C.L. & Salmon, E.D. The kinetochore microtubule minus-end disassembly associated with polewards flux produces a force that can do work. Mol. Biol. Cell 7, 1547–1558 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maddox, P., Desai, A., Oegema, K., Mitchison, T.J. & Salmon, E.D. Polewards microtubule flux is a major component of spindle dynamics and anaphase A in mitotic Drosophila embryos. Curr. Biol. 12, 1670–1674 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Forer, A. Local reduction of spindle fiber birefringence in living Nephrotoma Suturalis (Loew) spermatocytes induced by ultraviolet microbeam irradiation. J. Cell Biol. 25, 95–117 (1965).

    Article  PubMed Central  Google Scholar 

  23. Forer, A., Spurck, T., Pickett-Heaps, J.D. & Wilson, P.J. Structure of kinetochore fibres in crane-fly spermatocytes after irradiation with an ultraviolet microbeam: neither microtubules nor actin filaments remain in the irradiated region. Cell Motil. Cytoskeleton 56, 173–192 (2003).

    Article  PubMed  Google Scholar 

  24. Fuge, H. Traction fibres in chromosome movement: the pros and cons. Biol. Cell 66, 209–213 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Johansen, K.M. & Johansen, J. Recent glimpses of the elusive spindle matrix. Cell Cycle 1, 312–314 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Khodjakov, A., Copenagle, L., Gordon, M.B., Compton, D.A. & Kapoor, T.M. Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis. J. Cell Biol. 160, 671–683 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhai, Y., Kronebusch, P.J. & Borisy, G.G. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J. Cell Biol. 131, 721–734 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. LaFountain, J.R. Jr, Cole, R.W. & Rieder, C.L. Partner telomeres during anaphase in crane-fly spermatocytes are connected by an elastic tether that exerts a backward force and resists polewards motion. J. Cell Sci. 115, 1541–1549 (2002).

    CAS  PubMed  Google Scholar 

  29. Shelden, E. & Wadsworth, P. Microinjection of biotin–tubulin into anaphase cells induces transient elongation of kinetochore microtubules and reversal of chromosome-to-pole motion. J. Cell Biol. 116, 1409–1420 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. King, J.M. & Nicklas, R.B. Tension on chromosomes increases the number of kinetochore microtubules but only within limits. J. Cell Sci. 113, 3815–3823 (2000).

    CAS  PubMed  Google Scholar 

  31. Nicklas, R.B., Kubai, D.F. & Hays, T.S. Spindle microtubules and their mechanical associations after micromanipulation in anaphase. J. Cell Biol. 95, 91–104 (1982).

    Article  CAS  PubMed  Google Scholar 

  32. Nicklas, R.B. The motor for polewards chromosome movement in anaphase is in or near the kinetochore. J. Cell Biol. 109, 2245–2255 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. B. Alsop, C. King and E. D. Richards for critical reading of the manuscript. This work was supported by a National Science Foundation Cellular Organization grant to D.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dahong Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Zhang, D. Kinetochore fibre dynamics outside the context of the spindle during anaphase. Nat Cell Biol 6, 227–231 (2004). https://doi.org/10.1038/ncb1104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1104

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing