Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lipid raft proteins have a random distribution during localized activation of the T-cell receptor

Abstract

The extent to which lipid raft proteins are organized in functional clusters within the plasma membrane is central to the debate on structure and function of rafts1,2,3. Glycosylphosphatidylinositol (GPI)-linked proteins are characteristic components of biochemically defined rafts1,4,5. Several studies report a function for rafts in T-cell stimulation6,7,8, but it is unclear whether molecules involved in T-cell receptor (TCR) signalling are recruited to (or excluded from) T-cell synapses through asymmetric distribution of raft microdomains or through specific protein–protein interactions9,10. Here we used FRET analysis11 in live cells to determine whether GPI-linked proteins are clustered in the plasma membrane of unstimulated cells, and at regions where TCR signalling has been activated using antibody-coated beads. Multiple criteria suggested that FRET between different GPI-linked fluorescent proteins in COS-7 or unstimulated Jurkat T-cells is generated by a random, un-clustered distribution. Stimulation of TCR signalling in Jurkat cells resulted in localized increases in fluorescence of GPI-linked fluorescent proteins and cholera toxin B-subunit (CTB)12. However, measurements of FRET and ratio imaging showed that there was no detectable clustering and no overall enrichment of GPI-linked proteins or CTB in these regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GPI-anchored proteins have a predominantly random distribution.
Figure 2: Fluorescence from lipid raft markers during TCR activation.
Figure 3: FRET ratio imaging of GPI-linked proteins.
Figure 4: Ratio imaging of cells labelled with raft and non-raft markers.

Similar content being viewed by others

References

  1. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature. 387, 569–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Edidin, M. The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomolec. Struct. 32, 417–444 (2003).

    Article  Google Scholar 

  3. Munro, S. Lipid rafts: illusive or elusive? Cell 115, 377–388 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Keller, P., Toomre, D., Diaz, E., White, J. & Simons, K. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nature Cell Biol. 3, 140–149 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Mayor, S., Rothberg, K.G. & Maxfield, F.R. Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 264, 1948–1951 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–2 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Pizzo, P. & Viola, A. Lymphocyte lipid rafts: structure and function. Curr. Opin. Immunol. 15, 255–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Dykstra, M., Cherukuri, A., Sohn, H.W., Tzeng, S.J. & Pierce, S.K. Location is everything: lipid rafts and immune cell signaling. Annu. Rev. Immunol. 21, 457–481 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Germain, R.N. The T cell receptor for antigen: signaling and ligand discrimination. J. Biol. Chem. 276, 35223–35226 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Delon, J., Kaibuchi, K. & Germain, R.N. Exclusion of CD43 from the immunological synapse is mediated by phosphorylation-regulated relocation of the cytoskeletal adaptor moesin. Immunity 15, 691–670 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Jovin, T.M. & Arndt-Jovin, D.J. Luminescence digital imaging microscopy. Annu. Rev. Biophys. Biophys. Chem. 18, 271–308 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Nichols, B.J. GM1-containing lipid rafts are depleted within clathrin-coated pits. Curr. Biol. 13, 686–690 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Nichols, B.J. et al. Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J. Cell Biol. 153, 529–541 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kenworthy, A.K. & Edidin, M. Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer. J. Cell Biol. 142, 69–84 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kenworthy, A.K., Petranova, N. & Edidin, M. High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell. 11, 1645–1655 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Varma, R. & Mayor, S. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature. 394, 798–801 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science. 296, 913–916 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A. & Tsien, R.Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Hoppe, A., Christensen, K. & Swanson, J.A. Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys. J. 83, 3652–3664 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Erickson, M.G., Alseikhan, B.A., Peterson, B.Z. & Yue, D.T. Preassociation of calmodulin with voltage-gated Ca(2+) channels revealed by FRET in single living cells. Neuron. 31, 973–985 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Fivaz, M. et al. Differential sorting and fate of endocytosed GPI-anchored proteins. EMBO J. 21, 3989–4000 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pralle, A., Keller, P., Florin, E.L., Simons, K. & Horber, J.K. Sphingolipid–cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1008 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harder, T. & Kuhn, M. Selective accumulation of raft-associated membrane protein LAT in T cell receptor signaling assemblies. J. Cell Biol. 151, 199–208 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chan, A.C., Iwashima, M., Turck, C.W. & Weiss, A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR ζ chain. Cell 71, 649–662 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. van Rheenen, J. & Jalink, K. Agonist-induced PIP(2) hydrolysis inhibits cortical actin dynamics: regulation at a global but not at a micrometer scale. Mol. Biol. Cell 13, 3257–3267 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bunnell, S.C. et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol. 158, 1263–1275 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hartgroves, L.C., Lin, J., Langen, H., Zech, T., Weiss, A. & Harder, T. Synergistic assembly of linker for activation of T cells signaling protein complexes in T cell plasma membrane domains. J. Biol. Chem. 278, 20389–20394 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Walmsley, A.R., Zeng, F. & Hooper, N.M. The N-terminal region of the prion protein ectodomain contains a lipid raft targeting determinant. J. Biol. Chem. 278, 37241–37248 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Anderson, R.G. & Jacobson, K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science. 296, 1821–1825 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Dewey, T.G. & Hammes, G.G. Calculation of fluorescence resonance energy transfer on surfaces. Biophys. J. 32, 1023–1035 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wolber, P.K. & Hudson, B.S. An analytic solution to the Förster energy transfer problem in two dimensions. Biophys. J. 28, 197–210 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fujiwara, T. et al. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 157, 1071–1081 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karpova, T.S. et al. Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J. Microscopy 209, 56–70 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to T. Zimmermann, P. Keller, A. Kenworthy, L. Samelson, T. Harder and K. Simons for DNA constructs, and S. Munro, H. Pelham, K. Schmidt and A. Kenworthy for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Nichols.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figures

Supplementary Information, Fig. S1 (PDF 353 kb)

Supplementary Information, Fig. S2

Supplementary Information, Fig. S3

Supplementary Information, Fig. S4

Figure legends and references (DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glebov, O., Nichols, B. Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nat Cell Biol 6, 238–243 (2004). https://doi.org/10.1038/ncb1103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing