Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Organelle-specific initiation of cell death pathways


Nuclear DNA damage and ligation of plasma-membrane death receptors have long been recognized as initial triggers of apoptosis that induce mitochondrial membrane permeabilization (MMP) and/or the direct activation of caspases. Accumulating evidence suggests that other organelles, including the endoplasmic reticulum (ER), lysosomes and the Golgi apparatus, are also major points of integration of pro-apoptotic signalling or damage sensing. Each organelle possesses sensors that detect specific alterations, locally activates signal transduction pathways and emits signals that ensure inter-organellar cross-talk. The ER senses local stress through chaperones, Ca2+-binding proteins and Ca2+ release channels, which might transmit ER Ca2+ responses to mitochondria. The ER also contains several Bcl-2-binding proteins, and Bcl-2 has been reported to exert part of its cytoprotective effect within the ER. Upon membrane destabilization, lysosomes release cathepsins that are endowed with the capacity of triggering MMP. The Golgi apparatus constitutes a privileged site for the generation of the pro-apoptotic mediator ganglioside GD3, facilitates local caspase-2 activation and might serve as a storage organelle for latent death receptors. Intriguingly, most organelle-specific death responses finally lead to either MMP or caspase activation, both of which might function as central integrators of the death pathway, thereby streamlining lysosome-, Golgi- or ER-elicited responses into a common pathway.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Organelle-specific permeabilization reactions in apoptosis.
Figure 2: ER-initiated signals leading to apoptosis.
Figure 3: Activation of the central executioner by organelle-specific signals.


  1. 1

    Kerr, J. F. R., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Nicholson, D. W. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6, 1028–1042 (1999).

    CAS  PubMed  Google Scholar 

  3. 3

    Kroemer, G. & Reed, J. C. Mitochondrial control of cell death. Nature Med. 6, 513–519 (2000).

    CAS  PubMed  Google Scholar 

  4. 4

    Bursch, W. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ. 8, 569–581 (2001).

    CAS  PubMed  Google Scholar 

  5. 5

    Green, D. R. & Kroemer, G. The central executioner of apoptosis: mitochondria or caspases? Trends Cell Biol. 8, 267–271 (1998).

    CAS  PubMed  Google Scholar 

  6. 6

    Finkel, E. The mitochondrion: Is it central to apoptosis? Science 292, 624–626 (2001).

    CAS  PubMed  Google Scholar 

  7. 7

    Kirsch, D. G. et al. Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrome c. J. Biol. Chem. 274, 21155–21161 (1999).

    CAS  PubMed  Google Scholar 

  8. 8

    Condorelli, F. et al. Caspase cleavage enhances the apoptosis-inducing effects of BAD. Mol. Cell. Biol. 21, 3025–3036 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Korsmeyer, S. J. et al. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ. 7, 1166–1173 (2000).

    CAS  PubMed  Google Scholar 

  10. 10

    Susin, S. A. et al. Two distinct pathways leading to nuclear apoptosis. J. Exp. Med. 192, 571–579 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Joza, N. et al. Essential role of the mitochondrial apoptosis inducing factor in programmed cell death. Nature 410, 549–554 (2001).

    CAS  PubMed  Google Scholar 

  12. 12

    Kroemer, G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nature Med. 3, 614–620 (1997).

    CAS  PubMed  Google Scholar 

  13. 13

    Martinou, J.-C. & Green, D. R. Breaking the mitochondrial barrier. Nature Rev. Mol. Cell Biol. 2, 63–67 (2001).

    CAS  Google Scholar 

  14. 14

    Zamzami, N. & Kroemer, G. Mitochondria in apoptosis. How Pandora's box opens. Nature Rev. Mol. Cell Biol. 2, 67–71 (2001).

    CAS  Google Scholar 

  15. 15

    Vieira, H. L. et al. Mitochondrial membrane permeabilization during apoptosis. Impact of the adenine nucleotide translocator. Cell Death Differ. 7, 1146–1154 (2000).

    CAS  PubMed  Google Scholar 

  16. 16

    Costantini, P., Jacotot, E., Decaudin, D. & Kroemer, G. Mitochondrion as a novel target of anti-cancer chemotherapy. J. Natl Cancer Inst. 92, 1042–1053 (2000).

    CAS  PubMed  Google Scholar 

  17. 17

    Rodrigues, C. M., Sola, S., Silva, R. & Brites, D. Bilirubin and amyloid-β peptide induce cytochrome c release through mitochondrial membrane permeabilization. Mol. Med. 6, 936–946 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Botla, R., Spivey, J. R., Aguilar, H., Bronk, S. G. & Gores, G. J. Ursodeoxycholate (UDCA) inhibits the mitochondrial permeability transition induced by glycochenodeoxycholate: a mechanism of UDCA cytoprotection. J. Pharmacol. Exp. Ther. 272, 930–938 (1995).

    CAS  PubMed  Google Scholar 

  19. 19

    Parks, J. K., Smith, T. S., Trimmer, P. A., Bennett, J. P. J. & Parker, W. D. J. Neurotoxic Aβ peptides increase oxidative stress in vivo through NMDA receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J. Neurochem. 76, 1050–1056 (2001).

    CAS  PubMed  Google Scholar 

  20. 20

    Boya, P., Roques, B. & Kroemer, G. (2001). Bacterial and viral proteins regulating apoptosis at the mitochondrial level. EMBO J. (in the press).

  21. 21

    Zheng, T. S. Death by design: the big debut of small molecules. Nature Cell Biol. 3, E1–E3 (2001).

    Google Scholar 

  22. 22

    Wong, A. et al. The Friedreich's ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and caclium and inhibitors of apoptosis. Hum. Mol. Genet. 8, 425–430 (1999).

    CAS  PubMed  Google Scholar 

  23. 23

    Wang, J., Silva, J. P., Gustafsson, C. M., Rustin, P. & Larsson, N. G. Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. Proc. Natl Acad. Sci. USA 98, 4038–4043 (2001).

    CAS  PubMed  Google Scholar 

  24. 24

    Fliss, M. S. et al. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287, 2017–2019 (2000).

    CAS  PubMed  Google Scholar 

  25. 25

    Singh, K. K. et al. Mitochondrial DNA determines the cellular response to cancer therapeutic agents. Oncogene 18, 6641–6646 (1999).

    CAS  PubMed  Google Scholar 

  26. 26

    Zhou, B.-B. S. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Rich, T., Allen, R. L. & Wyllie, A. H. Defying death after DNA damage. Nature Cell Biol. 407, 777–783 (2000).

    CAS  Google Scholar 

  28. 28

    Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 16, 307–310 (2000).

    Google Scholar 

  29. 29

    Oda, E. et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053–1058 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Yu, J., Zhang, L., Hwang, P. M., Kinzler, J. W. & Vogelstein, B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 7, 673–682 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Deng, Y. & Wu, X. Peg3/Pw1 promotes p53-mediated apoptosis by inducing bax translocation from cytosol to mitochondria. Proc. Natl Acad. Sci. USA 97, 12050–12055 (2000).

    CAS  PubMed  Google Scholar 

  32. 32

    Donald, S. P. et al. Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res. 61, 1810–1815 (2001).

    CAS  PubMed  Google Scholar 

  33. 33

    Oda, K. et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849–862 (2000).

    CAS  Google Scholar 

  34. 34

    Moroni, M. C. et al. Apaf-1 is a transcriptional target for E2F and p53. Nature Cell Biol. 3, 552–558 (2001).

    CAS  PubMed  Google Scholar 

  35. 35

    Marchenko, N. D., Zaika, A. & Moll, U. M. Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 275, 16202–16212 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Kumar, S. et al. Targeting of the c-Abl tyrosine kinase to mitochondria in the necrotic cell death response to oxidative stress. J. Biol. Chem. 276, 17281–17285 (2001).

    CAS  PubMed  Google Scholar 

  37. 37

    Taneja, N., Tjalkens, R., Philbert, M. A. & Rehemtulla, A. Irradiation of mitochondria initiates apoptosis in a cell free system. Oncogene 20, 167–177 (2001).

    CAS  PubMed  Google Scholar 

  38. 38

    Leach, J. K., Van Tuyle, G., Lin, P. S., Schmidt-Ullrich, R. & Mikkelsen, R. B. Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res. 61, 3894–3901 (2001).

    CAS  PubMed  Google Scholar 

  39. 39

    Kaufman, R. J. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211–1233 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Patil, C. & Walter, P. Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr. Opin. Cell Biol. 13, 349–356 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Katayama, T. et al. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nature Cell Biol. 1, 479–485 (1999).

    CAS  PubMed  Google Scholar 

  42. 42

    Iwawaki, T. et al. Translational control by the ER transmembrane kinase/ribonuclease IRE1 under ER stress. Nature Cell Biol. 158–164 (2001).

  43. 43

    Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Niwa, M., Sidrauski, C., Kaufman, R. J. & Walter, P. A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded response. Cell 99, 691–702 (1999).

    CAS  PubMed  Google Scholar 

  45. 45

    McCullough, K. D., Martindale, J. L., Klotz, L. O., Aw, T. Y. & Holbrook, N. J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulation Bcl-2 and perturbing the cellular redox state. Mol. Cell. Biol. 21, 1249–1259 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Zinszner, H. et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 12, 982–995 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Nakagawa, T. et al. Caspase-12 mediates endoplasmic reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 403, 98–103 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Nakagawa, T. & Yuan, J. Cross-talk between two cysteine protease families: activation of caspase-12 by calpain in apoptosis. J. Cell Biol. 150, 887–894 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Yoneda, T. et al. Activation of caspase-12, an endoplasmic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanisms in response to ER stress. J. Biol. Chem. 276, 13935–13940 (2001).

    CAS  PubMed  Google Scholar 

  50. 50

    Berridge, M. J., Lipp, P. & Bootman, M. D. The versatility and universality of calcium signalling. Nature Rev. Mol. Cell Biol. 1, 11–21 (2000).

    CAS  Google Scholar 

  51. 51

    Jayaraman, T. & Marks, A. R. T cells deficient in inositol 1,4,5-trisphosphate receptor are resistant to apoptosis. Mol. Cell. Biol. 17, 3005–3012 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Khan, A. A. et al. Lymphocyte apoptosis: mediation by increased type 3 inositol 1,4,5-trisphosphate receptor. Science 273, 503–507 (1996).

    CAS  PubMed  Google Scholar 

  53. 53

    Blackshaw, S. et al. Type 3 inositol 1,4,5,-trisphosphate receptor modulates cell death. FASEB J. 14, 1375–1379 (2000).

    CAS  PubMed  Google Scholar 

  54. 54

    Miyake, H., Hara, I., Arakawa, S. & Kamidono, S. Stress protein GRP78 prevents apoptosis induced by calcium ionophore, ionomycin, but not by glycosylation inhibitor, tunicamycin, in human prostate cancer cells. J. Cell. Biochem. 77, 396–408 (2000).

    CAS  PubMed  Google Scholar 

  55. 55

    Jamora, C., Dennert, G. & Lee, A. S. Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc. Natl Acad. Sci. USA 93, 7690–7694 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Johnson, S., Michalak, M., Opas, M. & Eggleton, P. The ins and outs of calreticulin: from the ER lumen to the extracellular space. Trends Cell Biol. 11, 122–129 (2001).

    CAS  PubMed  Google Scholar 

  57. 57

    Szalai, G., Krischnamurthy, R. & Hajnoczky, G. Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J. 18, 6349–6361 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Nakamura, K. et al. Changes in the endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. J. Cell Biol. 150, 731–740 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Tagami, S., Eguchi, Y., Kinoshita, M., Takeda, M. & Tsujimoto, Y. A novel protein, RTN-XS, interacts with both Bcl-XL and Bcl-2 on endoplasmic reticulum and reduces their anti-apoptotic activity. Oncogene 19, 5736–5746 (2000).

    CAS  PubMed  Google Scholar 

  61. 61

    Hacki, J. et al. Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene 19, 2286–2295 (2000).

    CAS  PubMed  Google Scholar 

  62. 62

    Annis, M. G. et al. Endoplasmic reticulum localized Bcl-2 prevents apoptosis when redistribution of cytochrome c is a late event. Oncogene 20, 1939–1952 (2001).

    CAS  PubMed  Google Scholar 

  63. 63

    Pinton, P. et al. Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ flux in Bcl-2-overexpressing cells. J. Cell Biol. 148, 857–862 (2001).

    Google Scholar 

  64. 64

    Foyouzi-Youssefi, R. et al. Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 97, 5723–5728 (2000).

    CAS  PubMed  Google Scholar 

  65. 65

    Pinton, P. et al. The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J. 20, 2690–2701 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Chami, M. et al. SERCA1 truncated proteins unable to pump calcium reduce the endoplamic reticulum calcium concentration and induce apoptosis. J. Cell Biol. 153, 1301–1313 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Distelhorst, C. W., Lam, M. & McCormick, T. S. Bcl-2 inhibits hydrogen peroxide-induced ER Ca2+ pool depletion. Oncogene 12, 2051–2055 (1996).

    CAS  PubMed  Google Scholar 

  68. 68

    He, H. L., Lam, M., McCormick, T. S. & Distelhorst, C. W. Maintenance of calcium homeostasis in the endoplasmic reticulum by Bcl-2. J. Cell Biol. 138, 1219–1228 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Pan, Z., Damron, D., Nieminen, A. M., Bhat, M. B. & Ma, J. Depeletion of intracellular Ca2+ by caffeine and ryanodine induces apoptosis of chinese hamster ovary cells transfected with ryanodine receptor. J. Biol. Chem. 275, 19978–19984 (2000).

    CAS  PubMed  Google Scholar 

  70. 70

    Mattson, M. P., Zhu, H., Yu, J. & Kindy, M. S. Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: involvement of perturbed calcium homeostasis. J. Neurosci. 20, 1358–1364 (2000).

    CAS  PubMed  Google Scholar 

  71. 71

    Schneider, I. et al. Mutant presenilins disturb neuronal calcium homeostasis in the brain of transgenic mice, decreasing the threshold for excitotoxicity and facilitating long-term potentiation. J. Biol. Chem. 276, 11539–11544 (2001).

    CAS  PubMed  Google Scholar 

  72. 72

    Mancini, M. et al. Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J. Cell Biol. 149, 603–612 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Bennett, M. et al. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282, 290–293 (1998).

    CAS  PubMed  Google Scholar 

  74. 74

    Zhang, X. D., Fanco, A. V., Nguyen, T., Gray, C. P. & Hersey, P. Differential localization and regulation of death and decoy receptors for TNF-related apoptosis-inducing ligand (TRAIL) in human melanoma cells. J. Immunol. 164, 3961–3970 (2000).

    CAS  PubMed  Google Scholar 

  75. 75

    DeMaria, R. et al. Requirement for GD3 ganglioside in CD95- and ceramide-induced apoptosis. Science 277, 1652–1655 (1997).

    CAS  Google Scholar 

  76. 76

    Rippo, M. R. et al. Ganglioside GD3 directly targets mitochondria in a Bcl-2 controlled fashion. FASEB J. 14, 2047–2054 (2000).

    CAS  PubMed  Google Scholar 

  77. 77

    Goss, P. E., Baker, M. A., Carver, J. P. & Dennis, J. W. Inhibitors of carbohydrate processing: a new class of anticancer agents. Clin. Cancer Res. 1, 935–944 (1995).

    CAS  PubMed  Google Scholar 

  78. 78

    Prendergast, G. C. Farnesyltransferase inhibitors: antineoplastic mechanisms and clinical prospects. Curr. Opin. Cell Biol. 12, 166–173 (2000).

    CAS  PubMed  Google Scholar 

  79. 79

    Liu, A.-X., Cerniglia, G. J., Berhard, E. J. & Prendergast, G. C. RhoB is required to mediate apoptosis in neoplastically transformed cells after DNA damage. Proc. Natl Acad. Sci. USA 98, 6192–6197 (2001).

    Google Scholar 

  80. 80

    Ferri, K. F. & Kroemer, G. Control of apoptotic DNA degradation. Nature Cell Biol. 2, E63–E64 (2001).

    Google Scholar 

  81. 81

    Li, W. et al. Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett. 17, 35–39 (2000).

    CAS  Google Scholar 

  82. 82

    Dai, H. et al. The polyamine oxidase inhibitor MDL-75,527 selectively induces apoptosis of transformed hematopoietic cells through lysosomotropic effects. Cancer Res. 59, 4944–4954 (1999).

    CAS  PubMed  Google Scholar 

  83. 83

    Zhao, M., Eaton, J. W. & Brunk, U. T. Protection against oxidant-mediated lysosomal rupture: a new anti-apoptotic activity of Bcl-2? FEBS Lett. 485, 104–108 (2000).

    CAS  PubMed  Google Scholar 

  84. 84

    Deiss, L. P., Galinka, H., Berissi, H., Cohen, O. & Kimchi, A. Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha. EMBO J. 15, 3861–3870 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Roberg, K. Relocalization of cathepsin D and cytochrome c early in apoptosis revealed by immunoelectron microscopy. Lab. Invest. 81, 149–158 (2001).

    CAS  PubMed  Google Scholar 

  86. 86

    Heinrich, M. et al. Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J. 18, 5252–5263 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Guicciardi, M. E. et al. Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J. Clin. Invest. 106, 1127–1137 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Foghsgaard, M. et al. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J. Cell Biol. 153, 999–1009 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Schotte, P. et al. Cathepsin B-mediated activation of the proinflammatory caspase-11. Biochem. Biophys. Res. Commun. 251, 379–387 (1998).

    CAS  PubMed  Google Scholar 

  90. 90

    Stoka, V. et al. Lyosomal protease pathways to apoptosis: cleavage of bid, not pro-caspase, is the most likely route. J. Biol. Chem. 276, 3149–3157 (2001).

    CAS  PubMed  Google Scholar 

  91. 91

    Suter, M. et al. Age-related macular degeneration. The lipofuscin component N-retinyl-N-retinylidene ethanolamine detaches proapoptotic proteins from mitochondria and induces apoptosis in mammalian retinal pigment cells. J. Biol. Chem. 275, 39625–39630 (2000).

    CAS  PubMed  Google Scholar 

  92. 92

    Farina, F. et al. Involvement of caspase-3 and GD3 ganglioside in ceramide-induced apoptosis in Farber disease. J. Histochem. Cytochem. 48, 57–62 (2000).

    CAS  PubMed  Google Scholar 

  93. 93

    Zhang, Z. et al. Lysosomal ceroid depletion by drugs: Therapeutic implications for a hereditary neurodegenerative disease of childhood. Nature Med. 7, 478–484 (2001).

    CAS  PubMed  Google Scholar 

  94. 94

    Puraman, K. L., Guo, W. X., Quian, W. H., Nikbakht, K. & Boustany, R. M. CLN3 defines a novel antiapoptotic pathway operative in neurodegeneration and mediated by ceramide. Mol. Genet. Metab. 66, 294–308 (1999).

    Google Scholar 

  95. 95

    Pennacchio, L. A. et al. Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1). Science 271, 1731–1734 (1996).

    CAS  PubMed  Google Scholar 

  96. 96

    Pennacchio, L. A. et al. Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice. Nature Genet. 20, 251–258 (1998).

    CAS  PubMed  Google Scholar 

  97. 97

    Wang, Z.-G. et al. Pml is essential for multiple apoptotic pathways. Nature Genet. 20, 266–272 (1998).

    CAS  PubMed  Google Scholar 

  98. 98

    Bottero, V. et al. IκB α, the NF-κB inhibitory subunit, interacts with ANT, the mitochondrial ATP/ADP translocator. J. Biol. Chem. (in the press).

  99. 99

    Beere, H. M. & Green, D. R. Stress management — heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol. 11, 6–10 (2001).

    CAS  PubMed  Google Scholar 

  100. 100

    Ravagnan, L. et al. Heat shock protein 70 antagonizes apoptosis inducing factor. Nature Cell Biol. (in the press).

  101. 101

    Xue, L., Fletcher, G. C. & Tolkovsky, A. M. Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis. Curr. Biol. 6, 361–365 (2000).

    Google Scholar 

  102. 102

    Lemasters, J. J. et al. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta 1366, 177–196 (1998).

    CAS  PubMed  Google Scholar 

  103. 103

    Brewer, J. W. & Diehl, J. A. PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc. Natl Acad. Sci. USA 97, 12625–12630 (2000).

    CAS  PubMed  Google Scholar 

Download references


This work was supported by a special grant from the Ligue Nationale contre le Cancer, as well as grants from ANRS, FRM and the European Commission (QLG1-1999-00739 to G.K.). K.F.F. is in receipt of a fellowship from the French Ministry of Science.

Author information



Corresponding author

Correspondence to Guido Kroemer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferri, K., Kroemer, G. Organelle-specific initiation of cell death pathways. Nat Cell Biol 3, E255–E263 (2001).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing