Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1

Abstract

Checkpoint responses change as cells proceed through the cell cycle. Here we describe a novel checkpoint gene in fission yeast, mrc1 (mediator of replication checkpoint), that confers activation of the checkpoint kinase Cds1 to DNA synthesis (S) phase. Mrc1 associates with Cds1 and is required for regulation of Cds1 by the checkpoint kinase Rad3. Mrc1 is regulated by the cell cycle, with the appearance of Mrc1 mRNA and protein coinciding with S phase. We propose that coordinated expression of Mrc1 with replication control proteins helps to ensure activation of the appropriate checkpoint response during DNA replication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HU sensitivity of mrc1 cells rescued by cds1+ plasmid.
Figure 2: Mrc1 is required for Cds1 regulation.
Figure 3: Defective S–M checkpoint in mrc1 chk1 cells.
Figure 4: Intact G2–M DNA damage checkpoint in mrc1 cells.
Figure 5: Regulation of Mrc1 protein and mRNA during the cell cycle.
Figure 6: Overproduced Cds1 is activated in HU-treated mrc1 cells.
Figure 7: Two-hybrid interactions between Mrc1 and Cds1.

Similar content being viewed by others

References

  1. Hartwell, L. H. & Weinert, T. A. Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629–634 (1989).

    Article  CAS  Google Scholar 

  2. Hartwell, L. H. & Kastan, M. B. Cell cycle control and cancer. Science 266, 1821–1828 (1994).

    Article  CAS  Google Scholar 

  3. Bell, D. W. et al. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286, 2528–2531 (1999).

    Article  CAS  Google Scholar 

  4. Walworth, N., Davey, S. & Beach, D. Fission yeast chk1 protein kinase links the rad checkpoint pathway to cdc2. Nature 363, 368–371 (1993).

    Article  CAS  Google Scholar 

  5. Murakami, H. & Okayama, H. A kinase from fission yeast responsible for blocking mitosis in S phase. Nature 374, 817–819 (1995).

    Article  CAS  Google Scholar 

  6. Lindsay, H. et al. S-phase-specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev. 12, 382–395 (1998).

    Article  CAS  Google Scholar 

  7. Boddy, M. N., Furnari, B., Mondesert, O. & Russell, P. Replication checkpoint enforced by kinases Cds1 and Chk1. Science 280, 909–912 (1998).

    Article  CAS  Google Scholar 

  8. Zeng, Y. et al. Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1. Nature 395, 507–510 (1998).

    Article  CAS  Google Scholar 

  9. Walworth, N. C. & Bernards, R. rad-dependent response of the chk1-encoded protein kinase at the DNA damage checkpoint. Science 271, 353–356 (1996).

    Article  CAS  Google Scholar 

  10. Martinho, R. G. et al. Analysis of Rad3 and Chk1 protein kinases defines different checkpoint responses. EMBO J. 17, 7239–7249 (1998).

    Article  CAS  Google Scholar 

  11. Brondello, J.-M., Boddy, M. N., Furnari, B. & Russell, P. Basis for the checkpoint signal specificity that regulates Chk1 and Cds1 protein kinases. Mol. Cell. Biol. 19, 4262–4269 (1999).

    Article  CAS  Google Scholar 

  12. Rhind, N., Furnari, B. & Russell, P. Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dev. 11, 504–511 (1997).

    Article  CAS  Google Scholar 

  13. Furnari, B., Rhind, N. & Russell, P. Cdc25 mitotic inducer targeted by Chk1 DNA damage checkpoint kinase. Science 277, 1495–1497 (1997).

    Article  CAS  Google Scholar 

  14. Furnari, B., Blasina, A., Boddy, M. N., McGowan, C. H. & Russell, P. Cdc25 inhibited in vitro and in vivo by checkpoint kinases Cds1 and Chk1. Mol. Biol. Cell 10, 833–845 (1999).

    Article  CAS  Google Scholar 

  15. Rhind, N. & Russell, P. The roles of the mitotic inhibitors Wee1 and Mik1 in the G2 DNA damage and replication checkpoints. Mol. Cell. Biol. 21, 1499–1508 (2001).

    Article  CAS  Google Scholar 

  16. Rhind, N. & Russell, P. The Schizosaccharomyces pombe S-phase checkpoint differentiates between different types of DNA damage. Genetics 149, 1729–1737 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Boddy, M. N. et al. Damage tolerance protein Mus81 associates with FHA1 domain of checkpoint kinase Cds1. Mol. Cell. Biol. 20, 8758–8766 (2000).

    Article  CAS  Google Scholar 

  18. Snaith, H. A., Brown, G. W. & Forsburg, S. L. Schizosaccharomyces pombe Hsk1p is a potential Cds1p target required for genome integrity. Mol. Cell. Biol. 20, 7922–7932 (2000).

    Article  CAS  Google Scholar 

  19. Takeda, T. et al. Regulation of initiation of s phase, replication checkpoint signaling, and maintenance of mitotic chromosome structures during S phase by hsk1 kinase in the fission yeast. Mol. Biol. Cell 12, 1257–1274. (2001).

    Article  CAS  Google Scholar 

  20. Saka, Y., Esashi, F., Matsusaka, T., Mochida, S. & Yanagida, M. Damage and replication checkpoint control in fission yeast is ensured by interactions of crb2, a protein with BRCT motif, with cut5 and chk1. Genes Dev. 11, 3387–3400 (1997).

    Article  CAS  Google Scholar 

  21. Willson, J., Wilson, S., Warr, N. & Watts, F. Z. Isolation and characterization of the Schizosaccharomyces pombe rhp9 gene: a gene required for the DNA damage checkpoint but not the replication checkpoint. Nucleic Acids Res. 25, 2138–2145 (1997).

    Article  CAS  Google Scholar 

  22. Tanaka, K., Boddy, M. N., Chen, X. B., McGowan, C. & Russell, P. Threonine-11, phosphorylated by Rad3 and ATM in vitro, is required for activation of fission yeast checkpoint kinase Cds1. Mol. Cell. Biol. 21, 3398–3404 (2001).

    Article  CAS  Google Scholar 

  23. Kumagai, A. & Dunphy, W. G. Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts. Mol. Cell 6, 839–849 (2000).

    Article  CAS  Google Scholar 

  24. Wilkinson, C. R. et al. Localization of the 26S proteasome during mitosis and meiosis in fission yeast. EMBO J. 17, 6465–6476. (1998).

    Article  CAS  Google Scholar 

  25. Kelly, T. J. et al. The fission yeast cdc18+ gene product couples S phase to START and mitosis. Cell 74, 371–382 (1993).

    Article  CAS  Google Scholar 

  26. Hofmann, J. F. X. & Beach, D. cdt1 is an essential target of the Cdc10/Sct1 transcription factor: requirement for DNA replication and inhibition of mitosis. EMBO J. 13, 425–434 (1994).

    Article  CAS  Google Scholar 

  27. Nishitani, H., Lygerou, Z., Nishimoto, T. & Nurse, P. The Cdt1 protein is required to license DNA for replication in fission yeast. Nature 404, 625–628 (2000).

    Article  CAS  Google Scholar 

  28. Haber, J. E. Partners and pathways repairing a double-strand break. Trends Genet. 16, 259–264 (2000).

    Article  CAS  Google Scholar 

  29. Mondesert, O., McGowan, C. H. & Russell, P. Cig2, a B-type cyclin, promotes the onset of S in Schizosaccharomyces pombe. Mol. Cell. Biol. 16, 1527–1533 (1996).

    Article  CAS  Google Scholar 

  30. Baber-Furnari, B. A. et al. Regulation of mitotic inhibitor Mik1 helps to enforce the DNA damage checkpoint. Mol. Biol. Cell 11, 1–11 (2000).

    Article  CAS  Google Scholar 

  31. Christensen, P. U., Bentley, N. J., Martinho, R. G., Nielsen, O. & Carr, A. M. Mik1 levels accumulate in S phase and may mediate an intrinsic link between S phase and mitosis. Proc. Natl Acad. Sci. USA 97, 2579–2584 (2000).

    Article  CAS  Google Scholar 

  32. Moser, B. A., Brondello, J.-M., Baber-Furnari, B. & Russell, P. Mechanism of caffeine-induced checkpoint override in fission yeast. Mol. Cell. Biol. 20, 4288–4294 (2000).

    Article  CAS  Google Scholar 

  33. Esashi, F. & Yanagida, M. Cdc2 phosphorylation of Crb2 is required for reestablishing cell cycle progression after the damage checkpoint. Mol. Cell 4, 167–174 (1999).

    Article  CAS  Google Scholar 

  34. Cho, R. J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73 (1998).

    Article  CAS  Google Scholar 

  35. Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).

    Article  CAS  Google Scholar 

  36. Desany, B. A., Alcasabas, A. A., Bachant, J. B. & Elledge, S. J. Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev. 12, 2956–2970 (1998).

    Article  CAS  Google Scholar 

  37. Hirao, A. et al. DNA damage-induced activation of p53 by the checkpoint kinase chk2. Science 287, 1824–1827 (2000).

    Article  CAS  Google Scholar 

  38. Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823 (1991).

    Article  CAS  Google Scholar 

  39. Bartel, P. L. & Fields, S. Analyzing protein–protein interactions using the two-hybrid system. Methods Enzymol. 254, 241–263 (1995).

    Article  CAS  Google Scholar 

  40. Lopez-Girona, A., Furnari, B., Mondesert, O. & Russell, P. Nuclear localization of Cdc25 regulated by DNA damage and 14-3-3 protein. Nature 397, 172–175 (1999).

    Article  CAS  Google Scholar 

  41. Chua, G., Taricani, L., Stangle, W. & Young, P. G. Insertional mutagenesis based on illegitimate recombination in Schizosaccharomyces pombe. Nucleic Acids Res. 28, E53 (2000).

    Article  CAS  Google Scholar 

  42. Ochman, H., Gerber, A. S. & Hartl, D. L. Genetic applications of an inverse polymerase chain reaction. Genetics 120, 621–623. (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bahler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targetting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Scripps Cell Cycle Groups for general support and encouragement. T. Wang kindly provided Cds1 antisera and S. Elledge discussed unpublished results. K.T. received salary support from The Naito Foundation. This research was funded by NIH. Correspondence and requests for materials should be addressed to P.R. Mrc1 is listed as SPAC694.06C in the S. pombe genome database and has the GenBank accession number CAB71844 .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Russell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K., Russell, P. Mrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1. Nat Cell Biol 3, 966–972 (2001). https://doi.org/10.1038/ncb1101-966

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1101-966

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing